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The first one is purely algebraic. Its objective is the classification of
quadratic forms over the field of rational numbers (Hasse-Minkowski
theorem) ). It is achieved in \,naﬁtef IV. The first three Cnaplers contain some
preliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols.
Chapter V applies the preceding results to integral quadratic forms of
discriminant + 1. These forms occur in various questions: modular functions,
differential topology, finite groups.

The second part (Chapters VI and VII) uses “‘analytic’’ methods (holomor-
phic functions). Chapter VI gives the proof of the ““theorem on arithmetic
progressions” due to Dirichlet; this theorem is used at a critical point in the
first part (Chapter III, no. 2.2). Chapter VII deals with modular forms,

and in particular, with theta functions. Some of the quadratic forms of

Chapter V reappear here.
The two parts correspond to lectures given in 1962 and 1964 to second

miariea A ardn Af thaca lantrirac

_ycal bludClllb al- lhc EWIU l‘TUI ulalc DUP&IIUUIC I I.CUCI.UU.UII. O1 tllGDC 1ECTUICS
in the form of duplicated notes, was made by J.-J. Sansuc (Chapters I-IV)
and J.-P. Ramis and G. Ruget (Chapters VI-VII). They were very useful to

e s e al

me, I extend here my gr atitude to their authors.
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Chapter 1

Finite Fields
All fields considered below are supposed commutative.

§1. Generalities

1.1. Finite fields

Let K be a field. The image of Z in K is an integral domain, hence
isomorphic to Z or to Z/pZ, where p is prime; its field of fractions is iso-
morphic to Q or to Z/pZ = F,. In the first case, one says that K is of

characteristic zero; in the qecnnd case, that K is of characteristic D.

The characteristic of K is denoted by char(K). If char(K) =p £ 0, pis
also the smallest integer n>0 such that n.1 =0.

Lemma _If charl K —

n
J vll“l \-l" ‘l,

one of its subﬁelds KP’.

tho mon o° v YP o an fenmnrnhiem of K antn
[ 21> "‘u}l Ve vV I 7 Jv 0 AT F & v ] & 5 vV A ViV

e 6 €allawa 4‘-:\‘»
111D it 1I01u0OWS uliat

o(x+y) = o(x)+0(y);

hence o is a homomorphism. Furthermore, o is clearly injective.

Theorem 1.—i) The characteristic of a finite field K is a prime number
p * 0; if f = [K:F,), the number of elements of K is g"= p’.

ii) Let p be a prime number and let ¢ = p’(f = 1) be a power of p. Let
Q be an algebraically closed field of characteristic p. There exists a unique
subfield F of Q which has q elements. It is the set of roots of the polynomial
Xi-X.

iii) All finite fields with g = p’ elements are isomorphic to F,.

If K is finite, it does not contain the field Q. Hence its characteristic is a
prime number p. If f is the degree of the extension K/F,, it is clear that
Card(K) = p’, and i) follows.’

On the other hand, if Q is algebraically closed of characteristic p, the
above lemma shows that the map x> x? (where ¢ = pf, f= 1) is an
automorphism of Q; indeed, this map is the f— th iterate of the automorphism
o: x — x? (note that o is surjective since Q is algebraically closed). Therefore,
the elements x € Q invariant by x — x? form a subfield F, of 2. The derivative
of the polynomial X?— X is

aXi 11 =

’ll

annf-lyea-1_1 _ _1
tl‘tl {9 r S A
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4 Finite fields

and is not zero. This implies (since Q is algebraically closed) that X?— X
has ¢ distinct roots, hence Card(F .) = g. Conversely, if K is a subfield of Q

with g elements, the multlpllcatlve group K* of nonzero elements in K has

q—1 elements. Then x"'1 = l if xe K* and x? = x if x € K. This proves
that K i¢ contained in F ce (‘ard(l(\ = Card(F \ we have K = F which

VARA Y AA AV WWVALIVIAAWNS 123 & v e NleA N4 A U\.-. asie v YV AARwan

completes the proof of u)
Assertion iii) follows from ii) and from the fact that all fields with p/

1 + T hadAdaAd 0O o 1
lements can be embedded in Q since Qis a

1.2. The multiplicative group of a finite field

Let p be a prime number, let f be an integer =1, and let g = p’.

Theorem 2.—The multiplicative group ¥ of a finite field F, is cyclic of
order g—1.

Proof. If d is an integer =1, recall that ¢(d) denotes the Euler ¢-function,
i.e. the number of integers x with 1 £ x < d which are prime to d (in other
words, whose image in Z/dZ is a generator of this group). It is clear that the
number of generators of a cyclic group of order d is ¢(d).

Lemma 1.—If n is an integer 21, thenn = E qS(d) (Recall that the nota-
tion d|n means that d divides n).

If d divides n, let C, be the unique subgroup of Z/nZ of order d, and
let @, be the set of generators of C,. Since all elements of Z/nZ generate
one of the C,, the group Z/nZ is the disjoint union of the ®, and we have

n = Card(Z/nZ) = 2;; Card(®,) = ;%j $(d).

Lemma 2.—Let H be a finite group of order n. Suppose that, for all divisors
d of n, the set of x € H such that x* = 1 has at most d elements. Then H is
cyclic.

Let d be a divisor of n. If there exists x € H of order d, the subgroup
(x) = {1, x,...,x* !} generated by x is cyclic of order d; in view of the
hypothesis, all elements y € H such that y¢ = 1 belong to (x). In particular,
all elements of H of order d are generators of (x) and these are in number
#(d). Hence, the number of elements of H of order d is 0 or ¢(d). If it were
zero for a value of d, the formula n = Z ¢>(d) would show that the number

antrarv tn hv nfhp cie In n
A 2 Y ‘J “\/ AA yvtll\vulv AAl P [~ 2 ’ AANWA W AR

wame Y £A11 o 1a a D ame
iCorem < i010OWS (rom ISinmma < app

= r
it is indeed obvious that the equation x* = 1, which has degree d, has at
most d solutions in F,.

[+}]
P
oL
b
i
o
|
o

Remark. The above proof shows more generaily that all finite subgroups
of the multiplicative group of a field are cyclic.



Equations over a finite field h)

Let g be a power of a prime number p, and let K be a field with g elements.

2.1. Power sums

T

Lemma.—Let u be an integer 20. The sum S(X*) = Z x* is equal to — 1
xek

if u'is 21 and divisible by q—1; it is equal to O otherwise.

(We agree that x* =1 if u =0 even if x =0.)"

If u = 0, all the terms of the sum are equal to 1; hence S(X¥) =¢.1 =0
because K is of characteristic p.

If uis =1 and divisible by g—1, we have 0* =0 and x* = 1 if x + 0.
Hence S(X*) = (g—1).1 = —1.

Finally, if u is =1 and not divisible by g—1, the fact that K* is cyclic
of order g — 1(th. 2) shows that there exists y € K* such that y* % 1. One has:

S(X) = ¥ x* = ¥ y'x* = yS(X")

xeK* xeK*
1 OV __ N ephinkh femmlina shnt OF u\ — 0N
\ =y )RAaA) = U wumu uupuca tnat tola ) =u.

(Varzant——Use the fact that, if d = 2 is prime to p, the sum of the d—th
roots of unity is zero.)

2.2. Chevalley theorem

Theorem 3 (Chevalley — Warning).—Let f, e K[X,,..., X,] be poly-

nomials in n variables such that % deg f, < n, and let V be the set of their
common zeros in K". One has

I o
Put P = H(l —f371) and let x e K"If x € V, all the f,(x) are zero and

P(x) = 1; if x¢ V, one of the f,(x) is nonzero and f(x)*~' = 1, hence
P(x) = 0. Thus P is the characteristic function of V. If, for every polynomial

fiweput S(f)= X f(x), we have
" Card(V) = S(P) (mod p)

and we are reduced to showing that S(P) = 0.

Now the hypothesis Z deg f, < n implies that deg P < n{g— I); thus P
is a linear combination of monomials X* = Xj* ... X}» with Zu; < n(g—1).
It suffices to prove that, for such a monomial X", we have S(X*) =0, and
this foliows from the lemma since at least one u; is <a—l

Corollary 1.— If 3 degf, <n and if the f, have no constant term, then the f,

have a nontrivial common zero.

Indeed, if V were reduced to {0}, Card(}) would not be divisible by p.
Corollary 1 applies notably when the f, are homogeneous. In particular:



6 Finite fields

Corollary 2.—A!l quadratic forms in at least 3 variables over K have a
non trivial zero.

(In geometric ianguage: every conic over a finite fieid has a rationai
point.)

§3. Quadratic reciprocity law
3.1. Squares in F,

Let g be a power of a prime number p.

Theorem 4.--(a) If p = 2, then all elements of F, are squares.

(b) If p * 2, then the squares of ¥; form a subgroup of index 2 in ¥} ;
this subgroup is the kernel of the homomorphism x — x@~V'2 with values
in {+1}.

1 >FP?>F>{+1}>1)

Case (a) follows from the fact that x — x? is an automorphism of F,.
In case (b) let Q be an algebraic closure of F,; if x e Fy, let y e Q be
such that y> = x. We have:

Y7l =x@D2 = t1sincex?”! = 1.
For x to be a square in F, it is necessary and sufficient that y belongs to F},
1 . y771 = 1. Hence F"‘2 is the kernel of x — x@~1/2, Moreover, since F*

is cyclic of order g—1, the index of F"‘2 is equal to 2.

3.2. Legendre symbol (elementary case)

N

Wa_ e __0,0 __ ¥ _a __ L " e 1 ¢~ " 7 1 _. ~
venmuon.—Let p be a prime numoer x4, Adnd el XX, .

symbol of x, denoted by (;), is the integer x?P~V/2 = 41,

*

The Legendre

A

‘ 0
It is convenient to extend ( ) to all of F, by putting (p) = (. Moreover,

p
if x € Z has for image x’ € F,, one writes (%) = (%)
¢ \p) =5/}

We have( \( i) ( xy\' The Legendre symbol is a “‘character” (cf.

chap. VI, §1). As seen in theorem 4, (;) = 1 is equivalent to x eF"", if

x € F; has y as a square root in an algebraic closure of F,, then (;—;) =y L



Quadratic reciprocity law ' 7

Computation of ( -)q forx =1, -1, 2:
\P/

If n is an odd integer, let £(n) and w(n) be the elements of Z/2Z defined by:

-~
»]
»
-

e(n) = ﬁ_i(modZ) _ {0ifn = 1 (mod 4)
A Wifn = —1(mod 4)
=1, ... f0ifn= +1(mod8)
w(n) = (mod2) = ¢
8 [Lifn = +5 (mod 8)

[The function ¢ is a homomorphism of the multiplicative group (Z/4Z)*
onto Z/2Z; similarly, « is a homomorphism of (Z/8Z)* onto Z/27Z.]

AaS & LAVl PR i aedlde §

Theorem 5.—The following formulas hold:
()=

ii) ( ?) = (—1y®

if) (3) = (= 1)*®,
b,

Only the ast deserves a proof. If « denotes a primitive 8th root of unity
in an algebraic closure Q of F,, the element y = a+a™" verifies y* = 2
(from o«* = —1 it follows that «> +a~2 = 0). We have

yP = aP+a”P
2
If p = +1 (mod 8), this implies y? = y, thus (~) =y 1=1Ifp= +5

\P/
(mod 8), one finds y* = &’ +a”> = —(a+a~') = —y. (This again follows
from «* = —1.) We deduce from this that y»~! = —1, whence iii) follows.
Remark. Theorem 5 can be expressed in the following way
—1 is a square (mod p) if and only if p = 1 (mod 4)
2 is a square (mod p) if and only if p = +1 (mod 8)

(5) = (2) -y

\& 7/ A4

Let Q be an algebraic closure of F,, and let weQ be a primitive /-th
root of unity. If x e F,, the element w* is well defined since w' = 1. Thus

a awa alla ¢a FAasems tha M araa annm??.
W€ ar€ aovi€ 1o 1orm uic NAaUdd dullr .

y= Z (f) w*.
XEF' l

y? = (=)L J
(By abuse of notation / denotes also the image of / in the field F,.)




8 Finite fields
We have

«-30)-()--()-

since in F} there are as many squares as non squares. Hence X C,w" =

I-1— I _w* = I, which proves the lemma. uek
75

Theorem 6 is now immediate. Indeed, by lemmas 1 and 2,
—1)*» | _
( L—L——\ =yt = ( ‘-?\
\ 7 ) \*/
and the second part of th. 5 proves that

((— I)e(:)‘) = (= 1)De,

Merssacl mddae W witba ID.. O
AT1QrnyiuLiurn.—/ Vvwiilg { 11

a sq 7
“‘quadratic residue” modulo p) and /Np otherwise. Theorem 6 means that

AraNSwe W



Appendix 9
Remark. Theorem 6 can be used to compute Legendre symbols by

PR NS

3-6)-6-(G0)-@--6)----

Another proof of the quadratic reciprocity law (G. EISENSTEIN, J. Crelle,
29, 1845, pp. 177-184.)

i) Gauss Lemma

Let p be a prime number #2, and let S be a subset of Fj such that F) is
- l

~|
—V—J

the disjoint union of S'and — S. In the following we take S ={

\ P4
If s € S and a € F;, we write as in the form as = e,(a)s, with efa) = 1
and s, € S.

7/ \
w 7~ N I a\ ™7 PRN
Lemma (uausS).—k— ) = [] es(@.
P

Ses
Remark first that, if s and s’ are two distinct elements of S, then s, * s,
{(for aotharwica ¢ = 4 o’ cantrarv ta tha chaoice af €)Y Thic chawe that ey ¢
\IVA WLIAWA YWWiIOWw O - vvllblal] LWV bilvw VilViww Vi u} A LMD VIIV YYD Ri1lGAAL O 7 7 Ja

is a bijection of S onto itself. Multiplying the equalities as = e,(a)s,, we

obtain
(p=1)/2TT . _ /TT
[ 71 1 A )

seS
hence
a?-12 - e (a)

1 /2\

2s <& > ~ and e,2) = —1 otherwise. From this we ge (—) = (-1)"®
p
p—1 p—1

where n(p) is the number of integers s such that 2 <s= S If pis
of the form 4k + 1 (resp. 4k — 1), then n(p) = k. Thus we recover the fact
al_a 2\_1:0_5 11_.-.10\-.._1/2\_ e € (A O\ L 4L £
mnmat| - j=1lp= i1 (modojana| — | = 1t p = xo(MOa o), CI1. tn. O

\p/ \pr/
il) A trigonometric lemma

Lemma.—Let m be a positive odd integer. One has
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SR = (—gym-0r2 (sm x—sin? \)
sSin x 15js(m—-1 )12\ m ,I
This is elementary (for instance, prove first that sin (mx)/sin (x ) is a poly
mial of degree (m-1)2i n sin? X, thg 1 remark that this polynomial h_ as

for roots the sin? 2 2n) with 1 £ j < (m—1)/2; the factor (—4)""‘”’2 is

iii) Proof of the quadratic reciprocity law

Let / and p be two distinct prime numbers different from 2. Let

S={1" . ~’(p—l)/2}

as above. From Gauss’ lemma, we get
(L) -
\p/

Now the equality Is = e (/)s;, shows that

i S
sl
N

l'o-

. 2m . 2m
sin — Is = e(l) sin — s,.

Multiplying these equalities, and taking into account that s+ s, is a bi-
jection, we get:

b

(\) (l)=]—[sing—!‘§/s1 2’—75
S€ se> P P

By applying the trigonometric lemma with m = I, we can rewrite this:
/

’k

SR

(—A\U-1(p-1)/4 TT
\ v

where T denotes the set of integers between 1 and (/—1)/2. Permuting the
roles of / and p, we obtain similarly:

(P) = (—4)U-De-1y (sm 2mt _ in2 27
I, )

SE, teT

The factors giving ( £) and (%’) are identical up to sign. Since there are
P, y
(p—1) ({—1)/4 of these, we find
(L) = (B) (= nye-va-vis
\pn/ \1/J"
\P/ \*/

This is the quadratic reciprocity law, cf. th. 6.



§1. The ring Z, and the field Q,
1.1. Definitions

For every n 2 1, let A, = Z/p"Z; it is the ring of classes of integers
(mod p"). An element of A, defines in an obvious way an element of 4,_,;
we thus obtain a homomorphism

¢n: An - An—l’

which is surjective and whose kernel is p"~'4,.
The sequence

Definition 1.—The ring of p-adic integers Z, is the projective limit of the
system (A,, ¢,) defined above.
By definition, an element of Z, = lim (4,, ¢,) is a sequence x =

.» X;) with x, € 4, and ¢,,(x,,) x,-, if n = 2. Addition and
in Z are defined “coordinate by coordmate . In other words,

iy 1111 p- i1uilia

Z, is a subring of the product ll A,. If we give A, the discrete topology and
I1 A, the product topology, the

ri
into a compact space (since it i1s clos
ASAWN & "I‘.’ Ur“vv \U.l.vv A% AV WIWVVUW

ng Z,, inherits a opology which turns it
ed in a product of compact spaces).

1.2. Properties of Z,

Let ¢,: Z, — A, be the function which associates to a p-adic integer x its
n-th component x,.

Proposition 1.—The sequence 0 — Z, 5 Z, Nl A, — 0 is an exact sequence
of abelian groups.
(Thus we can identify Z,/p"Z, with 4, = Z/p"Z.)

Muitiplication by p (hence also by p") is injective in Z,; indeed, if
x = (x,) is a p-adic integer such that px = 0, we have px,,, = 0 for all n,
and x, ., is of the form p"y, ., with y €A, .q;since x, =, ..(x,..), we

"""" T3y T TT vEEW ket i TTYET ./ll'f'l “SmpTi1y TTTTT ra+ i\“a+ l./’

see that x, is also divisible by p", hence, is zero.
11
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It is clear that the kernel of ¢, contains p"Z,; conversely, if x = (x,,)
belongs to ker(e,,), one has x,, = 0 (mod p") for all m = n which means that

there exists a well defined element y,, ., of 4,,_, such that its image under
the isomorphism A4,,_, - p"Z/p"Z < A,, satisfies x,, = p"y,,—,- The y; define

and ane checke immediataly that ny — v
A A% LALR

alemant v af 7 — lim 4.
LA WEANY W AN D lllllll‘“l“bv.] II J v

ull Ulvlll\vllb J i .-lp Adilles1 l’ Ak
-

D

which proves the proposition.

Proposition 2.—(a) For an element of Z, (resp. of A,) to be invertible it
is necessary and sufficient that it is not dwlszble by p.

(b) If U denotes the group of invertible elements of Z,, every nonzero
element of Z, can be written uniquely in the form p"u with ue U and n 2 0.
(An element of U is called a p-adic unit.)

It suffices to prove (a) for 4,; the case of Z, will follow. Now, if x € 4,
does not belong to pA,, its image in 4, = F, is not zero, thus invertible:

hence there exists y, z € 4, such that xy = 1—pz, hence
xy(1+pz+... +p" 12" =1,
which proves that x is invertibie.
On the other hand, if x € Z, is not zero, there exists a largest integer »
such that x, = e,(x) is zero; then x = p"u with u not divisible by p, hence
u € U by (a). The uniqueness of the decomposition is clear.

Notation.—Let x be a nonzero element of Z,; write x in the form p"u
with u € U. The integer n is called the n-ndm valuation of x and denoted by

Avaz & = ARV ARV Eywa v avw Visaiohe vaarw VR w

v,(x). We put v,(0) = + 00 and we have

vp(xy) = v,(x)+0,(3), v(x+y) 2 inf (v,(x), v,(¥))
It follows easily from these formulas that Z, is an integral domain.
Proposition 3.—The topology on Z, can be defined by the distance
d(x,y) = e 79,

The ring 7 is a complete metric space in which Z is dense.

The 1deals P"Z, form a ba51s of neighborhoods of 0; since x € p"Z, is
equivalent to v,(x) = n, the topology on Z, is deﬁned by the distance
d(x, y) = e~ "**79. Since Z, is compact, it is complete. Finally, if x = (x,)
is an element of Z,, and if y, € Z is such that y, = x, (mod p"), then lim.y, =
x, which proves that Z is dense in Z,.

1.3. The field Q,

Definition 2.—The field of p-adic numbers, denoted by Q,, is the field of
Jractions of the ring Z,.

One sees immediately that Q, = Z,[p~']. Every element x of Q} can be
written uniquely in the form p"u with n € Z, u € U; here again, » is called the
p-adic valuation of x and is denoted by v,(x). One has v,(x) = 0 if and only
if x e Z,.
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Proposition 4.—The field Q,, with the topology defined by d(x, y)

ine 7. nc¢ an nnon cubrina: tho fiold OO
[ 2V ] ST w Y

2= (X~ jo lnrally comnart and ron
, - .vv“"'} \.V'l!’lubi W Wi up ) NI V‘le't (S 194 4 "’6 L} L J.vl

is dense in Q,.
This is clear.

.....,..J,.. 1Y\ Wa ~An~nld

of Q (resp. Z) for the p-adic distance d
2) The distance d satisfies the “ultrametric’ inequality

d(x, z) = sup (d(x, y), d(y, 2)).

From this one sees that a sequence u, has a limit if and only if

r

lim. (4,4, —1,) =0;

similarly, a series converges if and only if its general term tends to 0.

§2. p-adic equations

2.1. Solutions

Lemma.—Let... > D,—> D,_, —...— D, be a projective system, and
let D = l(@ . D, be its projective limit. If the D, are finite and nonempty,

then D is nonempty

The fact that D + o is clear if the D,— D,_, are blii‘Jt‘:Ctl'v'c, wE aic
going to reduce the lemma to this special case. For this, denote by D, , the
image of D,., in D,; for fixed n, the D, , form a decreasing family of finite
nonempty subsets; hence this family is stationary, i.e. D, , is independent
of p for p large enough. Let E, be this limit value of the D, ,. One checks
immediately that D, — D,_, carries E, onto E,_,; since the E, are non-

empty, we have lim . E, + 2 by the remark made at the beginning; hence,
<

a fortiori l({_nl .D, ¥ 2.

"'l

Notation—If feZ,X,, .. =] 1s @ polynomial with coefficients in

Z,, and if nis an integer 21, we denote by £, the polynomial with coefficients
in A, deduced from f by reduction (mod p").

Proposition 5.—Let fP eZJ[X,,..., X,] be polynomials with p-adic
integer coefficients. The following are equivalent:

i) The f® have a common zero in (Z,)".

i) For all n > 1, the polynomials f, have a common zero in (A,)".

Let D (resp. D,) be the set of common zeros of the f (resp. f,(”). The
D, are finite and we have D = lim . D,. By the above lemma, D is nonempty

if and only if the D, are nonempty; hence the proposition.

A point x = (x;, ..., x,,) of (Z,)" is called primitive if one of the x; is
invertible, that is, if the x; are not all divisible by p. One defines i imilar

way the primitive elements of (4,)™.
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Proposmon 6.—Let fPeZ][X,,..., X, be homogeneous polynomials
'L

¥ v » fnllaviys rva orvsnalosnte
[ 742115 424 buc”lblc'l'rﬂo 4 1ic Juuuvvuls wc Cquu/u&cru.

a) The f© have a non trivial common zero in (Q,)".

b) The f D have a common primitive zero in (Z,)™.

¢) For all n > 1, the f,\” have a common primitive zero i
The implication b) = a) is trivial. Conversely, if x = (x,, ce.sXy) is a

nontrivial common zero of the £, put
h = inf(v,(x,), ..., v,(x,) and y =p~"x

It is clear that y is a primitive element of (Z,)", and that it is a common
zero of the f(, Hence b) < a).
The equivalence of b) and c) follows from the above lemma.

2.2. Amelioration of approximate solutions.

We are concerned with passing from a solution (mod p") to a true
anlntinn 1 a with affniants 1+ 7\ n na 11ane tha fFAallauwsne lamma fa_ndin
VLUV \l & WVILLL \.«UClll\dUllLD 111 LJp} 11¢ WO LIIV I.Ul.lUWllls Iviliiiia \l.l asliv

analogue of ‘“Newton’s method”):

T omenecen = _y FYY ... J.a £ L_ *a_. _J___2 . 4. Y a4 . . " - 1. - "
wmmu.——-wt _[ e br LA | ana et j 0€ IitS aerivaqtiive. L€l X € bp’ n,K c L
such that 0 < 2k < n, f(x) = 0 (mod p"), v,(f'(x)) = k. Then there exists

y € Z, such that

res b

S() = 0(mod p™*?), v,(f'(»)) = k, and y = x (mod p"™").
Take y of the form x+p"~*z with z € Z,. By Taylor’s formula we have
f) = f(x)+p" *zf'(x)+p** *a withaeZ,.
By hypothesis f(x) = p"b and f'(x) = p*c with b € Z, and ¢ € U. This allows

o choose z 1in such a way that
a4 A 4 4 AL MWSWwWil

wALAN

Q
-4

o

=

b+zc = 0 (mod p).
From this we get
fO) = p"(b+zc)+p*"~*a = 0 (mod p"*?)
since 2n'—-2k > n. F_‘inally Taylor’s formula appliedr to f! shows that
f'(») = p*c (mod p"™%); since n—k > k, we see that v (f’(y)) = K.
Theorem 1. eZJXy,....Xp,x=(x)e(@,)",n,keZ and j an

b
oor curh that n ( 7y < m Swunnnco that O\ < Vb < n on 4
T OWliIE sikier = ) = i O, (7015 v

f(x) = 0(mod p") and v, ( U (x)) =
\9X;
Then there exists a zero y of f in (Z,)" which is congruent to x modulo p*~*.
Suppose first that m = 1 By applying the above lemma to x© = x,

we obhtain r‘” e 7 conoruent to x® (mod p"~ "\ and such that

e aal b L s ¥ - ACL L Y o [« 28 A

Sx) = 0 (mod p"**) and v,(f'(xV)) = k
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We can apply the lemma to x{!), after replacing n by n+1. Arguing induc-

tively, we construct in this way a sequence x(%, ..., x9), ... such that
x@*D = x@ (mod p"**7%), f(x@) = 0 (mod p"*")
This is auchyv quence If v igc ite limit. we have flvy = 0 and v = x
A AR IU A “ “ Vll W AAWY e AS J AN A WA llllll" \AA 4 BAGA Y W " \Jl A4 SOAANS J [ d
(mod p"7¥), hence h theorem for m = 1.
The case m > 1 reduces to the case m = 1 by modifying only x;. More
nranicaly 1at 2‘1— 7 ITV] lha tha nalunAamial 1m An variahla n‘\fﬂ:nnr‘ | XY

precisely, let f € Z,[X;] be the polynomial in one variable obtained by

replacmg X, i % j, by x;. What has just been proven can be applied to f and
; this shows the existence of y; = x; (mod p"~*) such that fo& ;) =0.If

one puts y; = x; fori % j, theelement y = (y,) satisfies the desired condition.

Corollary 1.—Every simple zero of the reduction modulo p of a polynomial
[ lifts to a zero of f with coefficients in Z,.

(If g is a polynomial over a field k, a zero x of g is called simple if at
least one of the partial derivatives dg/0X; is nonzero at x.)

This is the special case n = 1, k = 0.

Corollary 2.—Suppose p + 2. Let f(X) = Za;; X;X; with a;; = a;; be a
quadratic form with coefficients in Z, whose discriminant det(a;;) is invertible.
Leta e 7.p anry prn,nrtnm solution of the aqunhnn f(v\ =a (mnd n\ ltffc toa

1itive ion of i
true solution.
In view of cor. 1, it suffices to show that x does not annihilate all the

(mod p) and x is primitive, one of these partnal derivatives is £0 (mod p).

Corollary 3.—Suppose p = 2. Let f = Za;;X;X; with a;; = a;; be a
quadratic form with coefficients in Z, and let ae Z,. Let x be a primitive
solution of f(x) = a (mod 8). We can lift x to a true solution provided x does

of
not annihilate all the —— modulo 4; this last condition is fulfilled if det(a,;) is
invertible. 0X;

Tha fras as

The first assertion follows from the theorem applied ton = 3, k = 1; the
second can be proved as in the case p + 2 (taking into account the factor 2).

Let U = Z) be the group of p-adic units. For every n 2 1, put U, =

1 1L "07 . l-ln.n 00 erne al Af tha hAamAamarnh 17 YA AL Tn
1Ty lJp, L1110 10 Viiivil VUl IV llUlllUlllUllJlllBlll Cn L %) _"\u/ll LJ’ « 111

particular, the quotient U/U, can be identified with F}, hence is cyclic of
order p—1 (cf Chap. I, th. 2) The U, form a decreasing sequence of open

.......... AT - ¥T TINY e S 1 .
bUUglULlpb Ul U, 4l uU = lllIl . U/Un I n = 1, tic Inap
- 1

“ (14+p"x) — (x modulo p)
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defines an isomorphism U,/U,., — Z/pZ; this follows from the formula:

+

222V

We see from this, by induction on n, that Ul /U,, has order p"'

Lemma.—Let 0 > A — E —> B — 0 be an exact sequence of ¢

groups (denoted additively) with A and B finite with orders a and b prime to
each other. Let B’ be the set of x € E such that bx = 0. The group E is the
direct sum of A and B'. Moreover B’ is the only subgroup of E isomorphic to B.

Since a and b are relatively prime, there exist r, s € Z such that ar + bs = 1.
IfxeAN B, thenax = bx = 0, hence (ar+bs) x =x =0;and AN B’ =
0. Moreover, all x € E can be written x = arx+bsx; since bB’ = 0, we have
bE < A, hence bsx € A; on the other hand, from abE = 0 follows that
arx € B'. Hence we see that £ = 4 @ B’ and the projection £ — B defines
an isomorphism of B’ onto B. Conversely, if B” is a subgroup of E iso-
morphic to B, we have bB” = 0 hence B” < B’ and B” = B’ because these
groups have the same order.

Proposition 7.—One has U = Vx U, where V = {x e U[xP™" = 1} is the
unique subgroup of U isomorphic to F.

0N r\r\hne the lamma tha avaoct
Une appiies 1€ iemma to the exact

1-U,/U,-»U/U,—>F; —>1,

which is allowable because the order of U,/U, is p"~! and the order of Fy
is p—1. From this, one concludes that U/U, contains a unique subgroup V,
isomorphic to F} and the projection

TTIWwY TYINT

U/Up = UV

carries V, isomorphically onto V,_,. Since U = lim U/U,, we get from

thiec hu nmacaaos tn tha limn sroup YW ~AF YT 2 A LD® Nna hae
L11ioy U pa aaasc I.U LllU lllllll., a ouusl }J \ 4 Ul L ) lbUlllUlPlllU lU lpo W1V 11ad
U = VxU,; the uniqueness of V follows from that of the V,,.

Corollary.—The field Q, contains the (p—1)th roots of unity.

Remarks—1) The group V is called the group of multiplicative repre-
sentatives of the elements of Fy.

2) The existence of V can also be proved by applying cor. 1 of th. 1 to
the equation x?” ! —1 = 0.

Lemma.—Let xeU,—U,,, withn21ifp+2andn=2if p=2.
Tnen x* €U, 41 ~U,+,.

By hypothesis, one has x = 1+kp" with k £ 0 (mod p). The binomial
formula gives

1

xP = 1+kp"* '+ ... +kPp

and the exponents in the terms not written are =2n+ 1, hence also 2n+2.
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Moreover np = n+2 (due to the fact that n = 2 if p = 2). This shows that

hence x? e U, ; =U,,,.
Proposition 8.—If p & 2, U, is isomorphic to Z,.
If p=2,U, ={+1}xU, and U, is isomorphic to Z,.

Consider first the case p + 2. Choose an element « € U, -U,, for
exa n]e o = l-l-n Rv the above ]emma we have zzp eU II 2 Let

«, be the image of m U,/U,; we have (a )""* % 1 and (oc )"" ‘= 1. But
U /U is of order p"~!; hence it is a cyclic group, generated by «,. Now,
A tha icamarnhiecm 71._;”21\{'7/ 17. onto 1J. /ITn_ Thed aoram

." Vn'¢ Viiw .I\‘l ALANJL lllolll £l i ..JI‘I .“5 4111

0n+l.a

Z/p"Z U,/U,+,
| |
Zp"'Z — > U/,

is commutative. From this one sees that the 6, , define an isomorphism
_ - "_l — . ., e

? clf qZ,, = lim.Z/p""*Z onto U, = lim. U,/U,, hence the proposition for

PV T 4

Suppose now that p = 2. Choose « € U, -U,, that is « = 5 (mod 8).
Define as above isomorphisms

Theorem 2.—The group Qj is isomorphic to ZxZ,xZ[(p—1)Z if p + 2
anlltn 7\(7. w 7.127, rfn = '7

oW ow e ..‘2 N | dmld b

Every element x € Q) can be written uniquely in the form x = p"u with
neZ and u e U. Hence Q) ~ Z xU. Moreover, prop. 7 proves that U =
V x U, where V is cyclic of order p—1, and the structure of U, is given by
prop. 8.

3.3. Squares in Q)

Theorem 3.—Suppose p + 2 and let x = p"u be an element of Qy, with
neZ and u € U. For x to be a square it is necessary and sufficient that n is
even and the image @ of u in ¥} = U/U, is a square.

(The last condition means that the Legendre symbol ( ) of @ is equal
to 1. We write in the following ( ) instead of ( ) )
p p
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Decompose u in the form u = v.ul with v € V and u, € U,. The decom-
7 ARV VARVE B i AL ¢l N awmnsran

mmcitime K L thn 0 pamd e
podILIvVIL v_p —_ LAV AUy (0)1 l.ll L plUVCB l.llal- X IB a aquau: iI ana Ullly it
n is even and v and u, are squares; but U, is isomorphic to Z, and 2 is
invertible in Z,; all the elements of U, are then squares. Since V is iso-

morphic to Fj, the theorem foliows.
Corollary.—If p + 2, the group Q}/Q}* is a group of type (2, 2). It has

Jor representatives {1, p, u, up} where u € U is such that | - | =

4

(—
»

This is clear.

Thnonmaves A ol nanncas o . slae AL MONR s L e oz 24 So sems e
R IICUL T -'.——rur ar ELemeri X = YV w U vz tU U€ u syuur [1] l.) necesour )y
and sufficient that n is even and u = 1 (mod 8)

The decomposition U = { +1} x U, shows that u is a square if and only
if u belongs to U, and is a square in U,. Now the isomorphism §: Z, — U,
constructed in the proof of prop. 8 carries 2"Z, onto U, ,,. Taking n = 1,
we see that the set of squares of U2 is equal to U;. An element u €U is
then a square if and Oan ll lt 1S congru uent to | modulo 8 hence the theorem

Remark.—The fact that every element of Uj; is a square follows also
from cor. 3 of th. 1 applied to the mmdmh form

Jrervee YV vaaw ViV aAaNsisaz Ja

Corollary.—The group Q3 /Q%? is of type (2, 2, 2). It has for representatives
{1, £5, 2, +10}.

Thic f;

la Y
4o 1V

for U/U,.

Remarks.

1) For p = 2, define homomorphisms ¢, w: U/U; — Z/2Z by means of
the formulas of chap. I, n° 3.2:

Nows from the fa
iilows from the ia

y_z—1, o (0 if 1 (mod 4)
o(2) = (mod 2) = _ ) ’
2 il if — 1 (mod 4)
z2—1 (0 if z= +1(mod8)
w(z) = (mod2) =4 -0 7
8 11 if z= +5(mod8)

isomorphism of U,/U, onto Z/2Z. The pair (e, w) defines thus an isomorphism
of U/U; onto Z/2Z x Z[2Z; in particular a 2-adic unit z is a square if and
only if &(z) = w(z) =0

2) Theorems 3 and 4 show that Q}? is an open subg(roup of Q7.



Chapter 111
Hilbert Symbol

§1. Local properties

In this paragraph, k denotes either the fieid R of real numbers or the
field Q, of p-adic numbers (p being a prime number).

1.1. Definition and first properties

Let a, b € k*. We put:
(a, b) = 1if z2—ax*—by* = 0 has a solution (z, x, y) + (0,0, 0) in k3.
(a, b) = —1 otherwise.
The number (a, b) = + 1 is called the Hilbert symbol of a and b relative to k.

It ic clear that (a4 A\ doee not chanae when 7 and b are mnltinlied hy sguares:
AL AV Viwihi viiGAW \“, U’ WVWwY 11V L Vll“llbv YV ilwil W GBlINW V A w lll“"lyllvu UJ 0\1““ W [

thus the Hilbert symbol defines a map from k*/k*? x k*/k*? into {+1}.

Dunnnciéine 1 Yot o helb® nud los L — Lf /1N [a B\ 1 ;¢ 3a
l.lUllUtlUll Ae™ AL u, U CSh wunu It hb — I\-\\/U} lUI \u, U} — 1 I

necessary and sufficient that a belongs to the group Nk; of norms of elements
of k7.

If b is the square of an element ¢, the equation z2—ax?—by? = 0 has
(c, 0, 1) for a solution, hence (a, b) = 1, and the proposition is clear in this
case since k, = k and Nkj = k*. Otherwise, k, is quadratic over k; if 8
denotes a square root of b, every element ¢ € k, can be written z+ 8y with
y, z € k and the norm N(§) of ¢ is equal to z2—by?. If a € Nk}, there exist
y, z ek such that @ = z2—by?, so that the quadratic form z2—ax?—by?
has a zero (z, 1, y) and we have (g, b) = 1.

Conversely, if (a, b) = 1, this form has a zero (z, x, y) % (0, 0, 0). One
has x + 0, for otherwise b would be a square. From this we see that a is the
£ :
x x

NArMmm N
11V1iill V.

Proposition 2.—The Hilbert symbol satisfies the formulas:

i) (a,b) = (b,a) and (a,c?) =1,
ii) (@, —a) =1 and (a,1-a) = 1,
iii) (a,b) = 1 = (aa’, b) = (a’, b),

\*™* » vy

iv) (a,b) = (@, —ab) = (a, (1- a)b)-

(In these formulas a, a’, b, ¢ denote elements of k*; one supposes a + 1

whan tha fAarmnla aantaine tha tarm 1 — \
YWAIVIL L1LGV 1VAILIULIG VWIILAILILID LIV Wil 1 “u. ’

Formula 1) is obvious. If b = —a (resp. if b = 1—a) the quadratic
form z?2 by has for zero (0, 1, 1) (res (1, )) thus (a, b) = 1
2 x L .. .

9
________ o b a ~ csslhcan s ATL ~
W[llbll prVCS ll} ll \a, U} l a !b bUlltd C t IIC SULVEIVUD [ lVl('b Cl. PIU[)

19



20 Hilbert symbol

we then have a' € Nk} <>aa’ € Nk, which proves iii). Formula iv)
follows from i), ii), iii).

Remark.—Formula iii) is a particular case of

v) (aa’. h\ = (a. b)Y (a’. b).

/’ N\ N3 ¥\ 3 ¥/5

which expresses the bilinearity of the Hilbert symbol; this formula will be
proved in the following section.

1.2. Computation of (a, b)

Theorem 1.—1f” = R, WE 71
if a and b are <O.
If k = Q, and if we write a, b in the form p*u, p?v where u and v belong to

the group U of p-adic units, we have
B «
@b = 0o “V(O) 2
\P/ \P/
(a, b) = (—1)We) taa)+polw) iy — 2

masn £ B
nave X vy —

D arsn '
nLvLal

p——

by the homomorphism of reduction modulo p: U—F;. As for e(u) and
u_—

w(u), they denote respectively the class modulo 2 of —— and of g
cf. Chap. II, n° 3.3] 2
Theorem 2.—The Hilbert symbol is a nondegenerate bilinear form on the

F,-vector space k*[k*2.
[The bilinearity of (a, b) is just formula v) mentioned at the en

vt séf R\ nda ta?? that :f & L% 3
The assertion (a, ) 1s nonaegenerate’” means that, if 0 ex™ 15 §

(a, b) = 1 for all a € k*, one has b e k*2.]
Corollary ——If b is not a square, the group Nk} defined in prop. 1 is a

suugruup OJ mae.x L m ICT
The homomorphism ¢,: k* —{ +1} defined by é,(a) = (a, b) has
kernel Nk} by prop. 1; moreover, ¢, is surjective since (a, b) is nondegener-

ate. Hence ¢, defines an isomorphism of k*/Nk; onto {+1i}; the coroilary
follows from this.

Q.
o
s}
=
]
p—t

Remark.—More generally, let L be a finite extension of k which is

galoisian and whose Galms group G is commutative. One can prove that
k*/NL* is isomorphic to G and that the knowledge of the group NL*

s (13
determines L. These are two of the main results of the so-called “local class

field theory.”
Proof of theorems 1 and 2.

Tha ~nca L D o $rivial Nnta thot LAk/L%A2 3o tham o wvanias space of
l.llC Cad R = N b LllVlal INUWC ulal A [l\r 7 ulcu a ViLviul pa\.c V1
dimension 1 (over the field F,) having {1, —1} for representatives.
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Suppose now that k = Q,,

Lemma,—Let veU be a p-adic unit. If the equation z* —px* —vy* = 0
has a nontrivial solution in Q,, it has a solution (z, x, y) such that z, y e U
and x € Z,.

D‘, f % 7% % p Akn“ Tr “o q ’ k‘ h" 1 7-X W -V b} ‘ﬂ‘.l\ﬁ knﬂ ~ M-:m:‘:ann ﬂl\l“‘-‘l\ﬁ

2y PIUP U Ul buap 11y 11 L.l Lllc BIVUII C\{ AllVll 11ad al}l HILLLivEC dDUILIULIVIL
(z, x, y). Let us show that this solution has the desired property. If it did not,
we would have either y = 0 (mod p) or z = 0 (mod p); since z>—vy? = 0
(mod p) and v U (mod p), we would have both y = 0 (mod p)and z = 0

(mod p), hence px? = 0 (mod p?),i.e. x = 0 (mod p) contrary to the primitive
character of (z, x, y).

We now return to the proof of theorem 1, and we suppose first that p + 2.

It is clear that the exponents « and B come in only by their residue
modulo 2; in view of the symmetry of the Hilbert symbol, there are only
three cases to consider:

1) « =0, B = 0. We must check that (u, v) = 1. Now the equation
2Z2—ux?—vy* =0
has a. nontrivial solution modulo p (chap. I, §2, cor. 2 to th. 3); since the
discriminant of this quadratic form is a p-adic unit, the above solution
lifts to a p-adic solution (chap. II, n° 2.2, cor. 2 to th. 1); hence (u, v) = 1.
2) a = 1, B = 0. We must check that (p yg\_{v\ Since (u, v) = 1 we

\p/

have (pu, v) = (p, v) by formula iii) of prop. 2; thus it suffices to check that

- v\ "I"L :- Py PRI of o o cmiimeea Al o Ao A Lt e 1
[) \ } IdCICAal 1L v Id A bquar s LIIC LWO [CII lb Ilg Cqu.l l
p
Otherwise ( —\) = —1, see chap. II, n° 3.3, th. 3. Then the above lemma
\.F,/

shows that z2 — px? —vy? does not have a nontrivial zero and so (p, v) =

-1.
3) « = 1, 8 = 1. We must check that (pu, pv) = (— 1)“"”’2( \I \’\
/

\n\p
\E'/ \F

Formula iv) of prop. 2 shows that:
(pu, pv) = (pu, —p*uv) = (pu, —uv).

By what we have just seen, (pu, pv) = (—_uv) , from which the desired result
p

Once theorem 1 is established (for p + 2), theorem 2 follows from it,

. . . . oge .
QINNrS "kn thml‘lﬂ MmivrI ey Iﬂ '\\ 10 klli“ﬂo"' m n'Aﬂ" A NrAava "l‘ﬂ ﬂl\n(‘ﬂnnﬁn"ﬂf“l
S Ul 1ULIIIua giViliE \d, 0) 15 vuincal , ifi O1GeI 1O Prove uiC nonaGlgeiKiady,

it suffices to exhibit, for all a € k*/k*? distinct from the neutral element, an
element b such that (a, b) = —1. By cor. to th 3 of chap. II, n° 3.3, we can

\

e -~ s e i o il . WY ainl alas u\ 1. dlcs csrm Al mmen L
LAKC U4 = p, u vl up WILIL ¥ € U dUCIL LAl \"‘} = =—1, LHCI1 WU CHHOONC 101

respectively, u, p, and u.

()
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The case p = 2. Here again, « and 8 come in only by their residue modulo
Y an tha ara thraa frncae tAn rAnacida
L QLINE lll\«l\' QAiv LILIVe VAOWO VU UUIIDIUVI

) a=0,8= e must check that (u, v) = 1 if 4 or v is congruent to
1 (mod 4) and (u, v) = —1 otherwise. Suppose first that u = 1 (mod 4)
Thenu = 1 (mod 3) oru=>5 Unuu 8 ) In the first case uis a squarc \ump u,
n° 3.3, th. 4) and we do have (¥, v) = 1. In the second case we have u+4v = 1

(mod 8) and there exists w € U such that w? = u+4v; the form 2% —ux? —vy?
has thus (w, 1, 2) for a zero and we do have (¥, v) = 1. Let us now suppose
u = v = —1(mod 4); if (z, x, y) is a primitive solution of z2 —ux?—vy* = 0,
then z2+x%+y? = 0 (mod 4); but the squares of Z/4Z are 0 and 1; this
congruence implies that x, y, z are congruent to 0 (mod 2), which contradicts
the hypothesis of primitivity. Thus we have (4, v) = —1 in this case.

2) « = 1, B = 0. We must check that (2u, v) = (—1)***(?*2()_ Fijrst let

us show that (2, v) = (= 1), je. that 2, v) = 1 is equivalmt tov= +1
(mod 8). By the above lemma if (2, v) = 1, there exists x, y, z € Z, such
that z2—2x%2—vy? = 0 and y, z = 0 (mod 2). Then we hav y =z2=1
L vrand han~a 1 _’,vz_aq — N lennd Q) Dt tha Anly crvaraas Al 1An Q ara
\IIIUU U}, 1IVIING 1 e N vV = U \lllUu 0} DUt LG Ulll] a\luaxca l UL UIV O aiv
0, 1, and 4; from this we get v = + 1 (mod 8). Conversely, if v = 1 (mod 8),
visa -square and (2 v) =1;ifv = —1 (mod 8) the equation 2% —2x% —vy?

= 0 has U, 1, 1 ) for a solution modulo 8 0, and this dpproxlmau: solution

lifts to a true solution (chap. II, n° 2.2, cor. 3 to th. 1); thus we have (2, v)
= 1.
We show next that 2u, v) = (2, v) (u, v); by prop. 2, this is true if

(2, v) =1 or (u, v) = 1. The remaining case is (2, v) = (4, v) = —1, ie.
v=3 (mod 8) and u = 3 or —1 (mod 8); after multiplying ¥ and » by
squares, we can suppose that u = —1, v =3 or u = 3, v = —5; now the
equations

z2242x?-3y* = 0and 22 —6x2+5y* = 0

have for solution (1, 1, 1); thus we have (2u, v) =
3) « =1, B = 1. We must check that

(2ii 20 1\e(u)e(v) + w(u) + w(v)
s .

y
\—1)

N’
[

Now formula iv) of prop. 2 shows that

7" ~_N 7

(2u, 2v) = (2u, —4uv) = (2u, —uv).

By what we have just seen, we have

(2“, 20) . ('__ 1)a(ﬁ)a(=ﬁa)+w(=w).
Since e(—1) = 1, w(—1) = 0 and () (1+(u)) = 0, the above exponent is
cqual 0 a\u‘p\(i)-r(u\u}-rw\u'), which proves theorem 1. The bdmearuy of
(a, b) follows from the formula giving this symbol, since ¢ and « are homo-
morphisms. The nondegeneracy is checked on the representatives {u, 2u}

LR

withu = 1, 5, —1 or —35. Indeed, we have (5, 2u) = —1 and
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Remark.—Write (a, b) in the form (—1)[*®! with [a, b] € Z/2Z. Then
[a, b] is a symmetric bilinear form on k*/k*? with values in Z/2Z and th. 1
gives its matrix with respect to some basis of k*/k*?:

— For k = R, it is the matrix (1).

—-Fnr](—Qp,p=E7 wnthhss{ ll-\|= —1, it is the matrix
01 { - \p)
(1 0)1fp:1(mod4)and( O)f = 3 (mod 4).

/

0
— For k = Q,, with basis {2, —1, 5} it is the matrix (0
1

(e =

OO =
S ~———"

§2. Global properties

The field Q of rational numbers embeds as a subfield into each of the
fields () and R. If a, b € Q¥*, (a, h\ (resp. (a, h\ \ denotes the Hilbert

symbol of their images in Q, (resp. R) We define V to be the set of prime
numbers together with the symbol oo, and make the convention that Q_, =

A0 BWiIiUWw XiX

2.1. Product formula

Theorem 3 (Hilbert).—If a, b € Q*, we have (a, b), = 1 for almost all
veVand
IT (a, b), = 1.
veV

(The expression “almost all v € ¥’ means ““all the elements of V except a
finite number”’.)

Since the Hilbert symbois are bilinear, it suffices to prove the theorem
when a or b are equal to — 1 or to a prime number. In each case, theorem 1
gives the value of (a, b),. We find

)a= -1, b= —1. One has (-1, —-1), =(-1, —1); = —1 and
(—=1,-1), = 1if p % 2, oo; the product is equal to 1.

2)a= -1, b=1 with [ prime. If /] = 2, one has (-1, 2), =1 for all
veV;ifl+ 2, onehas(—-1,]),=1ifv+2,land (-1,0), =(-1,0]); =
(= DD, The product is equal to 1.

Na=1>b=1 withl, I'primes. If ] = I, formula iv) of prop. 2 shows
that (/, ), = (—1, 1), for all v € ¥ and we are reduced to the case considered
above. If / # I" and if I’ = 2, one has (/, 2), = 1 for v % 2, / and

(2

1) (1, 2), = |\—/| = (—1)*D, cf. chap. I, n° 3.2, th. 5.

If / and I’ are distinct and different from 2, one has (/, /"), =1 forv # 2, ], I'and

(I, 1, = (~ 1y, g, 1),—( ) @ “(TI)
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but by the quadratic reciprocity law (chap. I, n° 3.3, th. 6) one has

Remark.—The product formula is essentially equivalent to the quadratic
reciprocity law. Its interest comes mainly from the fact that it extends to

all algebraic number fields (the set V being replaced by the set of “‘places”
of the field).

2.2. Existence of rational numbers with given Hilbert symbols

Theorem 4.—Iet (a). . be a finite family of elements in Q* and let

L=t _ Lot \Fisiel Y& L jeiees Feees y

(&1, 0)ier, vev be a family of numbers equal to + 1. In order that there exists

x € Q* such that (a;, x), = ¢; , for all i eI and all v €V, it is necessary and

cuffiriont that tho followine ronditione ho cnticfiod:
U“”.U’V'.' Sy s G JV.‘V'Y"’S CUTIrAsL VI U L’“"'u"'cul

(1) Almost all the e; , are equal to 1.
(2) For all i e I we have I'I L e, = 1.

(N Lo w1l 2o =~ 17 4L Lo { ~ --\ — = Lne =11 2 T
\W) 1'urau ve V triere C.ﬂlblb .&v € vv .)uut inai Uiy Aply = Ei’vJUf ki &t < 1.

The necessity of (1) and (2) follows from theorem 3; that of (3) is trivial
(take x, = x).

To prove the sufficiency of these conditions, we need the following three
lemmas:

inder thanrem?’ \ —TLet o n  m. m
7 Wi CAAWN/A Wikl Ad N ¥ “l’ LB ] “"’ "'1’ * o v 9 "’n

be integers with the m; being pairwise relatwel ly prime. There exists an integer a

such that a = a; (mod m,) for all i.
T a lho ¢ha mue~ndivat AL aa Darr~ss 4 thnnenne alhAwtra ¢thhnt ¢l PRSI |
LCL M OC nc pivuauvi O1 Illi DUCLUUL LIICULVILIL DIIVUWD Llidal 11T vallvilival
homomorphism
i=n
ZimZ —~ | Z/mZ

i=1

is an isomorphism. The lemma follows from this.

Lemma 2 (““Approximation theorem”).—Let S be a finite subset of V.
The image of Q in Hs , is dense in this product (for the prodict topology
Ve
of those of Q,).

Being free to enlarge S, we can suppose that S.= {0, p,, ...p,} where
the p; are distinct prime numbers and we must prove that Q is dense in
RxQ,,' ... xQ,.. Let (x4, Xy,...,x,) be a point of this product and
let us show that this point is adherent to Q. After multiplying by some
integer, we may suppose that x; e Z, for 1 < i < n. Now one has to prove

that, for all ¢ > 0 and all integers N > 0, there exists x € Q such that

|x—x,]| < & and v,(x—x)= N fori=1,...,n
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By lemma 1 applied to m; = pY, there exists x, € Z such that v, (x, — x,)
= N for all i. Choose now an integer ¢ = 2 which is prime to all the p; (for
example a prime number). The rational numbers of the form a/q™, a € Z,
m 2 0, are dense in R (this follows simply from the fact g™ — oo when
m — o). Choose such a number u = a/g™ with

xo—xo+upl ... pY| <

(s ot}

The rational number x = xy+up}) ... pY has the desired property.

x

Lemma 3 (““Dirichlet theorem”).—If a and m are relatively prime integers
2 1, there exist infinitely many primes p such that p = a (mod m).

The proof will be given in chap. VI; the reader can check that it uses
none of the results of chapters 1II, 1V, and V.

Now come back to theorem 4, and let (¢;,,) be a family of numbers
equal to +1 and satisfying conditions (1), (2), and (3). After multiplying
the a; by the square of some integer, we can suppose that all the a, are
integers. Let S be the subset of ¥ made of oo, 2, and the prime factors of a;;
let T be the set of v € ¥ such that there exists i e I with ¢ , = —1; these
two sets are finite. We distinguish two cases:

1) Wehave SNT = 2.

Put
a=[]! and m=8]]L
IeT ies
4 1+2,0
Because SN T = o, the integers a and m are relatively prime and, by
lamma 2 thara avicte a nrima numhar n Ad 1) with »n & C1) 7T Wa
1V Jy LiIviW VALIOLW Plllll\v 11UI111UWL ’l \IIIUU 'Il} YYiLilk ll 2 \J I, VYN

are going to show that x = ap has the desired property, i.e. (a;, x), = ¢,
forallielandv e V.

If veS, we have ¢; , = 1 since SNT = o, and we must check that
(a;, x), = 1. If v = oo, this follows from x > 0; if v is a prime number /,
we have x = a? (mod m), hence x = a® (mod 8) for / = 2 and x = a® (mod /)
for I # 2; since x and g are /-adic units, this shows that x is a square in QF
(cf. chap. II, n° 3.3) and we have (a;, x), = 1.

If v =1lis not in S, a, is an /-adic unit. Since / + 2 we have

a vi(b)
@, b), —_—(—l‘) for all beQpF, cf. th. 1.

If 1¢TU{p}, x is an l-adic unit, hence v,(x) = 0 and the above formula
shows that (a;, x); = 1; on the other hand, we have ¢, , = 1 because /¢ T.
Ifl e T we have v,(x) = 1; moreover, condition (3) shows that there exists

ennh tha 11 2 | O i ~ma AF tha & 180 amna 1
J\l € v, Uil Lllal \u;, Jl)‘ = 5‘ 1 lUl ain i Cl, SINcCC Onc o1 tllc 6, 1 la “juai

to —1 (because / belongs to T), we have v/ (x;) = 1 (mod 2) hence

Va

/{ ) \ R . -
(@i, x), = G} @, x), =¢, foralliel
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There remains the case / = p, which we deduce from the others using

tha nroduct formnla -
SAAW PLV\I“VG ANFALARAGEAGS o

(ab x)p = H (ab X),, = l;[ Ei,v = &, p-
vp

vy¥p
Tn nmrsnsalatan ¢tha ccawmnnalfl Aftlhhanswncen A 2h thn mnaa O A T . .
LD COILPICLIOY UlIC P1OUUL UL UItvVIecI f 11 I vadv o 1V 14 = o,

2) General case.

We know that the squares of QF form an open subgroup of Q¥, cf. chap. II,
n° 3.3. By lemma 2, there exists x’ € Q* such that x’/x, is a square in Q for
all veS. In particular (a;, x’), = (a;, x,), = ¢, for all v eS. If we set
N0 = &,4(@;, x°),, the family (», ) verifies conditions (1), (2), (3) and
moreover 7; , = 1 if v eS. By 1) above there exists y € Q* such that
(@, ), = m;,,forallieIand all ve V. If we set x = yx’, it is clear that x
has the desired properties.
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Quadratic Forms over Q, and over Q

§1. Quadratic forms

1.1. Definitions

First recall the general notion of a quadratic form (see BOURBAKI, Alg.,
chap. IX, 3, n° 4).

Definition 1.—Let V be module over a commutative ring A. A function
Q: VA A l 1177 fnrm nmnm V lf

r < 41 Lt v t]wuwru JUIII& vy 7

1) Oax) = a*Q(x) forac A and x eV
2) The function (x, y) — Q(x+y)— Q(x)— Q(») is a bilinear form.

Such a pair (V, Q) is called a quadratic module. In this chapter, we limit

ourselves to the case where the rmg A is a field k of characterzstlc #2 the

A I\f‘“‘ﬂ I/ ﬂ 1’\ oarm
A-Moaui uicy

We put:

<M
P
L
<«
(€]
(@]

x.y = 3{Q(x+y)- 0(x)—- 0}

P pa 1. 1. P o . Lo e

this makes sense since the characteristic of k£ is different from 2. The map
(x, y) > x.y is a symmetric bilinear form on V, called the scalar product
associated with Q. One has Q(x) = x.x. This establishes a bijective corre-
spondence between quadratic forms and symmetric bilinear forms (it would
not be so in characteristic 2).

If (V, Q) and (V’, Q') are two quadratic modules, a linear map f: V — V~’

such that ()’ ) f = () is called a mnrnhlvm {nr metric mnrnhrvm\ of {V [0))

lnto (V’, Q)); then f(x).f(y) = x.yforall x, yeV.

Matrix nfn aundratic form —_1 et (e A he a ha IS Qf |4 T!\

LVAREI by V] W Ui« l JViriie. L § l/1<l<n e u Uuu

of @ with respect to this basis is the matrix 4 = (a;;
it is symmetric. If x = Xx,e; is an element of V, then

NN =N g vy,
X\ Ly Bijritgo
»J

~

which shows that Q(x) is a ‘‘quadratic form” in x,,..., x, in the usual
sense.

If we change the basis (e;) by means of an invertible matrix X, the matrix
A’ of Q with respect to the new basis is X.A4."X where ‘X denotes the trans-

A 74

pose of X. In particular

27
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1.2. Orthogonality

Let \V, g) be a quad dratic module over k. Two elements x, y of V are

called orthogonal if x.y = 0. The set of elements orthogonal to a subset H
of V is denoted by H° it is a vector subspace of V. If V, and V, are two
vector subspaces of V, they are said to be orthogonal if V, < V3, ie. if xeV,,
y € V, implies x.y = 0.

The orthogonal complement V° of V itself is called the radical (or the
kernel) of V and denoted by rad(¥). Its codimension is called the rank of Q.
If ¥° = 0 we say that Q is nondegenerate; this is equivalent to saying that
the discriminant of Q is + 0 (in which case we view it as an element of the
group k*/k*?).

Let U be a vector subspace of V, and let U* be the dual of U. Let
qu: V — U* be the function which associates to each x e V the linear form
(y e U x.y). The kernel of g, is U°. In particular we see that Q is non-
degenerate if and only if g,: V — V* is an isomorphism.

™ 2.2 ___ " Y . T7 Tr L o et ciilhamannes ~X Y N_. o al _a

vcimmuon &.—Lel Uy, ..., Uy, De vector suospaces oJ v. vne sdays itnai
V is the orthogonal direct sum of the U, if they are pairwise orthogonal and
if V is the direct sum of them. One writes then:

A

V= Uléf')...@Um.
Remark.—If x € V has for components x; in U,,
Q(X) = Ql(xl)+ e +Qm(xm)’
where Q; = Q|U,; denotes the restriction of Q to U,. Conversely if (U;, Q)

is a family of quadratic modules, the formula above endows V = @U;,
with a quadratic form @, called the direct sum of the Q;, and one has

V=U®...0U,

Pro
A AWV

This is clear.

Proposition 2.—Suppose (V, Q) is nondegenerate. Then:

i) All metric morphisms of V into a quadratic module (V', Q') are injective.

11N Fne All nortos ca:l\nnnnnn 184 nf '/ o ho ve

lll A VI ULt VL LU vnu, ll Cco v wo nu
U° = U, dim U+dim = dim ¥, rad(U) = rad(U®°) = Un U°.
T ,..._,1....‘.-,, .A.MLJA YT o snrnsndocninorrnts £ rmwmd nwmd £ TT0 20 T 4. .
i€ quaaralic moauie U IS nonaegeneraie ij ana oniy iy U~ is nonaegeneraie, i
A

which case V = U@ U°.

iii) If V is the orthogonal direct sum of two subspaces, they are nondegenerate
and each of them is orthogonal to the other.
If f: V=V’ is a metric morphism, and if f(x) = 0, we have

xy =f(x).f(») =0 for all yeV;

this implies x = 0 because (V, Q) is nondegenerate.
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If U is a vector subspace of V, the homomorphism ¢g,: V — U* defined
above is surjective; indeed, it is obtained by composing qV' V — V* with
a minal qriminanti~ns L7 O TTX 2w d wia Lhava ciz:msm~ca ,l | "N

i1a

the canonical SurjécCiion v © — U* and we have supposea tna
Thus we have an exact sequence:

tgy is un_ycux vE.

n 0 t3 n
Uu—>u —>V — T >V

14
o
3
4
53
')
C\l

vl v auvu v 114V W

tained in U°°, we have U = U°°; the formula rad(U Ur\ U° is clear;
applying it to U, and taking into account that U%® = U, we get rad(U°) =
rad(U) and at the same time the last assertion of ii). Finally iii) is trivial.

1.3. Isotropic vectors

Definition 3.—An element x of a quadratic module (V, Q) is called isotropic
if Q(x) = 0. A subspace U of V is called isotropic if all its elements are iso-

tronir
eI v [ 2 SN

We have evidently:
Uisotropic = U < U® = Q|U = 0.

Definition 4.—A quadratic module having a basis formed of two isotropic
elements x,y such that x.y £ 0 is called a hyperbolic plane.
After multiplying y by 1/x.y, we can suppose that x.y = 1. Then the

""l' ail U

matrix of the quadratic form with respect to x, y is simply ((1) (1)), its

Proposition 3.—Let x be an isotropic element +0 of a nondegenerate
quadratic module (V, Q). Then there exists a subspace U of V which contains
x and which is a nypcrbut’u p:ane

Since V is nondegenerate, there exists z € V' such that x.z = 1. The
element y = 2z —(z.z)x is isotropic and x.y = 2. The subspace U = kx+ky

has the desired property.

Corollary.—If (V, Q) is nondegenerate and contains a nonzero isotropic
element, one has Q(V) = k.

(In other words, for all a €k, there exists v € V such that Q(v) = a.)

In view of the proposition, it suffices to give the proof when V is a
hyperbolic plane with basis x, y with x, y isotropic and x.y = 1. If a ek,

thena = Q x+gy), and from this Q(V) = k.

1.4. Orthogonal basis

Definition 5.—A4 basis (e, e,) of a quadratic module (V, Q) is called

« vy

orthogonal if its elements are pairwise orthogonal, i.e. if V = ke, D...d ké,.
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This amounts to saying that the matrix of Q with respect to this basis is
a diagonal matrix:

‘a; 0 ...0"°

0 a,...0

\ o |

\0 0...a,
If x = Zx;e;, one has Q(x) = a;x¥+ ... +a,x2

Theorem 1.—Fvery quadratic module (V, Q) has an orthogonal basis.

We use induction on #n = dim V, the case n = 0 being trivial. If V is
isotropic, all bases of V' are orthogonal. Otherwise, choose an element
e, € V such that e,.e; # 0. The orthogonal complement H of e, is a hyper-

plane and since e, does not belong to H, one has V = ke, @ H; in view of
the inductive hypothesis, H has an orthogonal basis (e, e). and

LAy 2RIV A2 Y PPVLAIN SIS MAsAUBVAIG: RIS \T29 =9 sy S22%=

(e, ...,e,) has the desired property.

Definition 6.—7Two orthogonal bases
e=1(e,...,e,)ande = (ey,...,e,)

of V are called contiguous if they have an element in common (i.e. if there
exist i and j such that e; = e;).

Theorem 2.—Let (V, () be a nondegenerate quadratic module of dimension
23,andlete ='(e;, ...e,),e = (e],...e.)betwoorthogonal bases of V. There
exists a finite sequence el M ""’ of orthogonal bases of V such that
e® = e e™ = e andeV is contlguous with e for0 £ i < m.

e

hrnn of aortho
“e a A2 .Y A4

H

savs that 0(0), PO ac

1AL o e vy w 19 o

relating e to e’)

We distinguish three cases:

N (e 2 )Xo e N—fp. 22 L 0O
1) (&) e-€)—(€1.€)" + U
This amounts to saying that e, and e; are not proportional and that the

plane P = ke, * ke, is nondegenerate. There exist then ¢,, &5 such that
n 7 /A\ 7 1 n 7 ’ A 7 ’
P =ke, ® keyand P = ke @ ke;.

Let H be the orthogonal complement of P; since P is nondegenerate, we
have V = H @ P, see prop. 2. Let (e3, . . ., e,) be an orthogonal basis of H.
One can then relate e to e’ by means of the chain;

e~—>(el’ 82,33’,... )*“>(€1,82, e3,...,e:)—>e’,

hence the theorem in this case.
i) (ey.e;) (e5.€;)—(ey.;)* + 0

: ’ ’
Same proof replacing e, by e,.

iii) (e,.e,) (el.e})—(e,.€))* =0fori =1, 2.
We prove first:

[N 'T’I....... nacrcnbee e —~ 1 casnls tlad I ST | PRI SR S R |
LCIHIA.— L Nere cAtY A © R dulrn it €, — Cl -r./\ez Ly norpyotropic anud
generates with e, a nondegenerate plane.
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We have e,.e, = e[.e]+x’(e;.e;); we must thus take x> distinct from

—(e4.€))/(e,.e,). Moreover, for e, to generate with e, a nondegenerate plane,
it is necessary and sufficient that

(el'el) (e.vc'ex)_(el'ex)2 7 0.

+ lasram~ .-. o fnd
ui€ nypo SiS lll}, w¢e 1ina

' , un
that the left hand side is —2x(e1.e1) (el.ez). Now hypotheS1s iii) implies
e.e; =0 for i =1, 2. We see thus that (2 verifies the conditions of the
lemma if and only if we have x # 0 and x* # —(ej.e{)/(e;.e3). This elimin-
ates at most three values of x; if k has at least 4 elements, we can find one
such x. There remains the case k = F, (the case k = F, is excluded because
char(k) # 2). But, then, all non-zero squares are equal to I and hypathesis
ili) can be written (e;.e,) (ek.e}) = 1 for 1 = 1, 2; the expression (ej.e;)/
(e,.e;) is thus equal to 1, and, in order to realize the condition x* = 0,
it suffices to take x = 1.

This being so, let us choose e, = e + xe, verifying the conditions of the
lemma. Since e is not isotropic, there exists e; such that (e,, e3) is an .

S N — ~ -~ 2 Py

it is an orthogonal basis of V. Since ke, +ke, is a nondegenerate pla
part i) of the p oof shows that one can relate e to ¢” by a chain of contiguous
bases; since e’ and e” are contiguous, the theorem follows.

1.5. Witt’s theorem

Let (V, Q) and (V', Q') be two nondegenerate quadratic modules; let
U be a subvector space of V, and let

s:U—V’
WA R Teesontisnn sanndsmin smansmsmleiansan AL TT Zenée~ I77 ) I $aevr $~ ,“.4-,...,1 ~ 4~ o oizle
UL all jecuve e muoulipuamnin vl U 1 nto v . v (¥ LU CALCIIU Y LU a duv-
space larger than U and if possible to all of V. We begin with the case

where U is degenerate:

Lemma.—If U is degenerate, we can extend s to an injective meiric
morphism s,: Uy — V' where U, contains U as a hyperplane.

Let x be a non-zero element of rad(U), and / a linear form on U such
that /(x) = 1. Since ¥ is nondegenerate, there exists y € ¥ such that /(u) =
u.y for all ue U; we can moreover assume that y.y = 0 (replace y by y— Ax,
with A = 4y.y). The space U; = U @ ky contains U as a hyperplane.

The same construction, applied to U’ = s(U), x’ = s(x)and I’ = [0 s~!
gives y'e V' and U; = U’ @ ky’. One then checks that the linear map
s,: Uy = V' which coincides with s on U and carries y onto y’ is a metric

;Sonﬁcrnhiem nfF Il antn I7!
A a Plllﬂlll Wi Ul LAV vl

Theorem 3 (Witt).—If (V, Q) and (V', Q') are isomorphic and non-
degenerate, every injective metric morphisim
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of a subvector space U of V can be extended to a metric isomorphism of
onto V.

Since ¥V and V' are iSOmOi'puu.,, w¢ Caii Suppose
by applying the above lemma, we are reduced to
degenerate. We argue then by induction on dim U

If dim U = 1, U is generated by a nonisotropic element
we have y.y = x.x. One can choose ¢ = + 1 such that x+ey i1s not 1sotr0plc
otherwise, we would have

2x.x+2x.y = 2x.x—2x.y =0

]
)
]
=9
s

which would imply x.x = 0. Choose such an £, and let H be the orthogonal
complement of z = x+e&y; we have V = kz @ H. Let o be the “symmetry
with respect to H”, i.e. the automorphism of ¥ which is the identity on H

and which changes z to —z. Since x—ey is contained in H, we have

o(x—ey) = x—ey and o(x+ey) = —x—¢y,

hence o(x) = —ey, and the automorphism —eo extends s.

If dim U > 1, we decompose U in the form U; ® U,, with U}, U, + 0.

By the inductive hypothesis, the restriction s, of s to U; extends to an
automorphism o, of V; after replacing s by o7 ! o s, one can thus suppose
that s is the identity on U,. Then the morphism s carries U, into the ortho-
gonal complement V, of U, ; by the inductive hypothesis, the restriction of
s to U, extends to an automorphism o, of V,; the automorphism o of V
which is the identity on U, and o, on ¥, has the desired property.

Corollary.—Two isomorphic subspaces of a nondegenerate quadratic
module have isomorphic orthogonal complements.

One extends an isomorphism between the two subspaces to an auto-
morphism of the module and restricts it to the orthogonal complements.

1.6. Translations

n
2 .
Let AX)= Za;X"+22X a;;X;X; be a quadratic form in n variables
i=1 i<j

over k; we put a;; = a;; if i > j so that the matrix 4 = (a;;) is symmetric.
The pair (K", f) is a quadratic module, associated to f (or to the matrix A).

Definition 7.—7wo quadratic forms f and [’ are called equivalent if the
corresponding modules are isomorphic.

Then we write f ~f’. Iif A and A’ are the matrices of f and f’, this
amounts to saying that there exists an invertible matrix X such that 4" =
X.A'X, see n° 1.1.

Let f(X;,..., X,) and g(X;, ..., X,) be two quadratic forms; we will
denote f+g (or simply f+g if no confusion is possible) the quadratic form
SXy, o X)X Xy )

in n+m variables. This operation corresponds to that of orthogonal sum
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Quadratic forms

(see def. 2, n° 1.2). We write similarly f—g (or simply f—g) for f+(—g).
Here are some examples of translations:

Definition 4'—A form f(X,, X,) in two variables is called hyperbolic if

we have
f~ XX, ~X} - X}

(This means that the module (k?, ) corresponding is a hyperbolic plane,
cf. def. 4).

We say that a form f(X,, ..., X,) represents an element a of k if there
exists x € k", x # 0, such that f(x) = a. In particular f represents O if and
only if the corresponding quadratic module contains a non-zero isotropic

element.

Proposition 3'.—If f represents O and is nondegenerate, one has f ~f, +g
where f, is hyperbolic. Moreover, f represents all elements of k.
This is a translation of prop. 3 and its corollary.

ary 1 Tot o — of V¥V )4 ho  mandoconornt
al.y Ae LCl S - 5\A1, DRI An_ll UC U nvriucxcricruti

form and let a € k*. The following properties are equivalent:

(i) g represents a.
(ii\ Nno hae o ~~ h _i_n72 urlon’ve

\.Illlr 1440 6 i e

(iii) The form f = g—aZ?* represent

It is clear that (ii) = (i). Conversely, if g represents a, the quadratic
module V corresponding to g contains an element x such that x.x = a; if H

denotes the orthogonal complement to x, we have V = H & kx, hence

o o~ lt_Ln72 whara L Aanntae tha Anadsr £ en nf&nnl« A ¢~ lanoia ~F
& re 1 WLIVIV 71 ULHIULLD UV Jua u1au\.« iorm attacncda to a ovasis o1 11

The implication (ii) = (iii) is immediate. Finally, if the form f = g—aZ?
has a nontrivial zero (x,,..., x,_,, z) we have either z = 0 in which case
g represents O thus also a, or z % 0 in which case g(x,/z, ..., x,_,/2) = a.

Hence (iii) = (i).

enerate forme o
I W A d

Corollarv 2.— ] ot g and h be two nondeo
y 2.—Let g ai two nondeg e forms

let f=g—=h. The followmg properties are equivalent:

(a) f represents 0.
(b) There exists a € k* which is represented by g and by h.
72

(c) There exists a € k* such that g-—aZ? and h— represent 0.

The equivalence (b) < (c) follows from coroilary 1. The implication
(b) = (a) is trivial. Let us show (a) = (b). A nontrivial zero of f can be
written in the form (x, y) with g(x) = A(y). If the element a = g(x) = h(y)
is # 0, it is clear that (b) is verified. If @ = 0, one of the forms g for example,
represents O, thus ali eiements of &, and in particular aii non-zero values
taken by A.

-
=
e’]
Q
=
'3
fa—
-
=
M
=)
2,
[+
o=
(9]
w
ot o
=
o
(o]
-
=
(44
Q.
%]
[72]
w
-
(@)
B,
Q.
[0
(@]
Q
3

forms into "sums of squares":
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Theorem 1'.—Let f be a quadratic form in n variables. There exists
ag,...,a, €k such that f ~a, X+ +aX2

The rank of f is the number ot mdlces i such that a; + 0. It 1s equal to
n if and only if the discriminant a, . . . a, of fis #0 (in other words, if f is

nondegenerate).

iiwi vy

Finally the corollary to Witt’s theorem gives the following ‘“‘cancellation
theorem”’:

[ ’
Theorem 4.—Let f = gthandf =g +h' betw

forms. If f ~f" and g ~g’, one has h ~h’.
Corollary.—If f is nondegenerate, then
f~g + ... +gn+h
where gy, . . . , g, are hyperbolic and h does not represent 0. This decomposition
is unique up to equivalence.

The existence follows from prop. 3’, and the uniqueness from theorem 4.
[The number m of hyperbolic factors can be characterized as the dimen-

sion of the maximal isotropic subspaces of the quadratic module defined by f]

1.7. Ouadratic forms over F
Quadratic forms over ¥,

Let p be a prime number 2 and let ¢ = p/ a power of p; let F, be a
field with g elements (cf. chap. I, §1).

Proposition 4.—A quadratic form over ¥, of rank =2 (resp. of rank 2 3)
represents all elements of ¥ (resp of F,).

In view of cor. 1 of prop. 3; it suffices to proveé tha q"a dratic forms in
3 variables represent 0 and this has been proved in chap I, §2, as a con-

sequence of Chevalley theorem.

[Let us indicate how one can prove this proposition without using
Chevalley theorem. One has to show that, if a, b, ¢ € F, are not zero, the
equation

(*) ax*+by*=c

has a solution. Let 4 (resp. B) be the set of elements of F, of the form ax?
(resp. of the form c¢—by®) with x e F, (resp. with y €F,). One sees easily
that 4 and B have each (¢+1)/2 elements; thus A N B = @ from which one
gets a solution of (¥).]

Recall now that the group F}/F}? has two elements (chap. I, n° 3.1).
Let a denote an element of F; which is not a square.

Proposition 5.—Every nondegenerate quadratic form of rank n over ¥, is
equivalent to
Xi+.. . +X2_ +Xx?
or

w2 . -rDd

Xi+...+X2_ +aX?,

depending on whether its discriminant is a square or not.
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Thisisclearif n = 1. If n > 2, prop. 4 shows that the form f represents 1.
It is thus equivalent to X% +g s where g is a form in n—1 variables and one
applies the inductive hypothesis to g.

Corollary.—For two nondegenerate quadratic forms over ¥, to be equivalent
it is necessary and sufficient that they have same rank and same discriminant.

(Of course the discriminant is viewed as an element of the quotient
group F}/F}2.)

§2. Quadratic forms over Q,

In this paragraph (n° 2.4 excepted) p is a prime number and k is the
p-adic field Q,.

All quadratic modules are over k and nondegenerate; we make the same
conventions for the quadratic forms.

2.1. The two invariants

Let (V, Q) be a quadratic module of rank n and d(Q) its discriminant;
it is an element of k*/k*?, cf. n° 1.1. If e = (e,, . . . e,) is an orthogonal

lhagia AF 1/ A P- A m11t 24 — o o wa haya
vasi> ul v, ana it we put 4; — €.C;y WU llave
— */7.%2
dQ) =a,...a, (ink*/k*)
(In what follows we will often denote by the same letter an element of k*

S *,
111 n° 11 the uilbert svmbol (a h) pnnal to + 1. We

9 11 Aelg Liilvw ai11 J HEIUVL \ey U Jy VG

(@) = [] @ a)).

one has e(e) = 1. If n = 2, one has &¢(e) = 1 if and only if
the form Z2—a, X?>—a, Y? represents 0, that is to say (cf. cor. 1 to prop. 3")
if and only if a; X% +a, Y? represents 1; but this last condition signifies that
there exists v € ¥ such that Q(v) = 1 and this does not depend on e. For
n = 3 we use induction on n. By th. 2 it suffices to prove that ¢(e) = &(e’)
when e and e’ are contiguous. In view of the symmetry of the Hilbert symbol,
s(e) does not change when we permute the e,; we can thus suppose that

= (e;...,e,) is such that e; = e,. If we put a; = eL.e;, then a, = a,.
O e can write e(e) in the form
e(e) = (a, a;. .. l_[ (ai, a))
/g TT /_ -

A N\ - )
= U1 “\S.{)“l)

since d(Q) = a, .. .a,
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Similarly

H (a;, aj)= H (a3, a}),
25i<j

25i<j
Laonn xrlaiale 4lan Jacieead was:le €A1 oo
11U1I1 WILIL1L UIC UCDIICU 10DUIL 10110 WD,

We write from now on &(Q) instead of e(e).

Translation.—If f is a quadratic form in n variables and if

f~a X}+...+a,X?
the two elements

Lemma.—a) The number of elements in the F,-vector space k*|k** is
2"withr=2ifp+2andr=3ifp=2.

b) If aek*/k** and ¢ = +1, let HE be the set of x € k*/k** such that
(x,a) =e. Ifa=1, H! has 2" elements and H;' = &. If a + 1, HE has
2" elements.

¢) Leta,a’ ek*/k** and e, s’ = +1;assume that H® and H', are nonempty.
For H: N H:. = @, it is necessary and sufficient that a = a’ and ¢ = —¢’.

Assertion a) has been proved in chap. II, n° 3.3. In b) the case a = 1
is trivial; of @ # 1, the homomorphism b+ (a, b) carries k*/k*? onto {+1}
(chap. III, n° 1.2, th. 2); its kernel H}! is thus a hyperplane of k*/k** and
has 2"~ ! elements; its complement H ! has 2"~ ! elements (it is an “affine”
hyperplane parallel to H}). Finally, if H: and HE are nonempty and disjoint,
they have necessarily 2"~! elements each and are complementary to one
another; this implies H! = H! hence

(x,a) = (x,a’) forall x e k*/k*?;
since the Hilbert symbol is nondegenerate, this impliesa = @’ and ¢ = —¢'.
The converse is trivial.
Let now f be a quadratic form of rank n; let d = d(f) and ¢ = &(f) be
its two invariants.
Theorem 6.—For f to represent O it is necessary and sufficient that:

i)n=2andd = —1 (in k*/k*?),
i) n=3and (-1, —d) = ¢,
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iii) n = 4 and eitherd £ 1 ord = 1 and e = (-1, —1).
wvynzS5

(In particular, all forms in at least 5 variables represent 0.)

Before proving the theorem, let us indicate a consequence of it: let

a € k*/k** and f, = f-aZ* We know (cf. n° 1.6) that f, represents 0 if and

il = vazien AvpawS

as one checks right away. By applying theorem 6 to f,, and taking into
account the above formulas, we obtain:

Corollary. Let a € k*/k*?. In order that f represent a it is necessary and
sufficient that:

d
i) n =2and (a, —d) = ¢,

iii) n = 3 and eithera + —dora = —dand (-1, —d) = ¢,
vl 2 > A
ivy n = 4.

(Note that, in this statement as in theorem 6, a and d are viewed as
elements of k*/k*?; the inequality @ + —d means that a is not equal to the
product of —d by a square.)

Proof of theorem 6.—We write f in the form f ~a, X2+...+a,X? and
consider separately the cases » = 2, 3, 4 and =5.

i) The casen = 2.
The form f represents O if and only if —a,/a, is a square; but —a,/a, =
—a,a, = —d in k*/k*?; hence this means that d = —1.

i) The case n = 3.
The form f represents 0 if and only if the form

L w2 w2 2
—Q3] ~ —a3a, Ay —a30;4; — Ay

represents 0. Now by the very definition of the Hilbert symbol, this last form
represents 0 if and only if we have

(—asay, —asa;) = 1.

Expanding this, we find
(-1, =1)(=1,8)(-1,a,)(a;, a3)(a,, a;)(a,, a3)(a;, a3) = 1
But one has (a;, a;)=(—1, a,), cf. chap. III, n° 1.1, prop. 2, formula iv).

One can thus rewrite the above condition in the form

(=1, = 1) (=1, a,a,a5) (a,, a;) (a,, a3) (a;, a5) = 1,
or (=1, —d)e=1,ie (-1, —d) ==
iil) The case n = 4.

A’ £ +
By cor. 2 to prop. 3/, f represent

x € k*/k*? which is represented by the two forms
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a, X}+a,X}  and —a;X}—a, X}
By case ii) of the coroiiary above, such an x is characterized by the conditions

(x, —aya;) = (ay, a3) and (x, —aza;) = (—as, —ay).

Let A be the subset of k*/k*? defined by ti_c first condition, and let B be the
ot represent 0, it is neces-
re clearly nonempty

a
of the Ipmma ornlpn at
o1t

AW KWALEAXLL QG Hivvil Go

a:

sary and sufficient that Am B=g. N

ow
(one has a, € 4 and —a. € B for Pvamn]e)'
N

-

ViV 2140 «w] S /1 Gara “w3 € A7 AWVAR waiiipia

the beginning of this n°, the relation
a,a; = A3a, and (@, a;) = —(—az;—a,).
The first condition means that d = 1. If it is fulfilled one has

e = (ay, a,) (a3, a,) (a;a,4, asa,);

by using the relation (x, x) = (—1, x) (cf. chap. IIl, n° 1.1, formula iv) of
prop. 2) we get from this:

I N =~ \ / 1 .~ o~ )\
€ = U1, az)\dz, Uuy)\ —1,dzUuy)
= (als aZ)(_a39 a4)(_13 _1)'

ence t
A AWillWwWw L

result follows.

iv) The case n = 5.

It is sufficient to treat the case n = 5. By using the lemma and part ii)
of the above corollary, we see that a form of rank 2 represents at least 2" !
elements of k*/k*2, and, the same is a fortiori true for the form of rank =2.
Since 2"~! = 2, frepresents at least one element a e k*/k*? distinct from d.
One has

f~aX?%4ig,

where g is a form of rank 4. The discriminant of g is equal to d/a; it is thus
different from 1, and, by iii), the form g represents 0. The same is then true
for f, and the proof of theorem 6 is complete.

Remarks.—1) Let f be a quadratic form not representing 0. The above
results show that the number of elements of k*/k*? which are represented
by fisequalto l ifn =1,t02" "ifn=2,t0 2'—11if n = 3, and to 2" if
n =4,

2) We have seen that all quadratic forms in 5 variables over Q, represent
0. In this connection, let us mention a conjecture made by E. Artin: al/
homogeneous polynomials of degree d over Q,, in at least d*+ 1 variables have
a nontrivial zero. The case d = 3 has been solved affirmatively (see, for

Avnmv\lq T Qonmvarn Koninl] Noderl Al-ad sam Wotene 108K £19
€Xampi€, 1. SPRINGER, NOAIAIKL. INEAEFL. AKaAaG. van v eienss., 1750, pp JiL—

516). The general case remained open for about thirty years. It was only in
1966 that G. TERJIANIAN showed that Artin’s conjecture is false there exists

a h ngCHCUUb pUlyIIOA al Ul UCgI'CC ‘I- Over QZ lIl 10 le'lleCb Wl lCh has no
nontrivial zero. Terjanian starts from the polynomial
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nX,Y,Z)= X*YZ+Y*ZX+Z* XY+ X?Y?+Y*Z2+Z*X?> - X*-Y*- Z4

ad A 5 o2) i mEmitive
od 4) if (x, y, z) is primitive

-
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h-

f(Xy,..oy Xo) = n(Xy, X5, X3) + n(Xa, Xs, Xe) + n(X;, Xg, Xy);

one has f(x,,..., x9) = 0 (mod 4) if (x,,..., Xo) is primitive. From this
one deduces easily that the polynomial

F(Xls ) Xls) =.f(Xls ce ey X9)+4.f(X105 IR XIS)

does not have a non-trivial zero. (There exist analogous examples—but of
hmrher r‘lporppc__f'nr all the n \

.....

One knows nevertheless that Artin’s conjecture is “‘almost™ true: for

a fixed degree d, it holds for all prime numbers p except a finite number

(Av_ W nruaeny A T Af Ad~th 10&8): h far 4 —
AW X-NOCHEN, amer. v. ¢f main., 1563), nOWCVEr, &vinl idr 4 -r, one does

not know how to determine the set of exceptional prime numbers.

Theorem 7.—Two quadratic forms over k are equivalent if and only if they
have the same rank, same discriminant, and same invariant e.

That two equivalent forms have the same invariants follows from the
definitions. The converse is proved by induction on the rank n of the two
forms fand g considered (the case n = 0 being trivial). Corollary to theorem 6
shows that f and g represent the same elements of k*/k*?; one can thus
find a € k* which is represented at the same time by f and by g; this allows

one to write:

f~aZ*+f and g ~aZ*+g,
where /', g’ are forms of rank #—1. Onc has

s

{
which shows that /' and g’ have the same invariants. In view of the inductive
hypothesis, we have /' ~ g’, hence f ~ g.

Corollary.—Up to equivalence, there exists a unique form of rank 4
which does not represent 0; if (a, b) = —1, it is the form z® —ax* — by* +abt*.
Indeed, by th. 6, such a form is characterized by

d(f) =1,ef) = = (-1,-1)

shows that z2 —ax? —by* +abt®> has these pro-

Remark.—This form is the reduced norm of the.unique non-commutative
t £ a

g a field ““of guaterni inng’
(S ) u AiwinNg “u‘vll.lvllu

d
J =b,ij=k=—]t,and(a,b) -1.

£
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PrOposition 6.—Let n 21, d ek*/k** and ¢ = +1. In order that there

cts a auadratic fnrm f nf rank n such that d(f) =d and &( f) = ¢ It is
necessaryandsuﬁiczent thatn =l,e=1;orn=2,d+ —1l;orn=2,e =1;
orn 2 3.

Tha caca n — 1 1¢ trivial Tf » — 9 aAne hace f ~o AY2 1LAhV2 and

111w vaowv 1t 1 10 wi1viQal L It Ly Vil llao‘/ Usx T U1 aliu,

if d(f)= —1, then o(f) = (a,b) = (a, —ab) = 1

thnie we cannnt have cmultanenncly A f\ — —1 and o f\ = —1 Coan-
Vil v Y w WEALLAAV L 1164 ¥V W JAEL} “ltullvvuul] W\J I a CALiNS ‘I\J } i N \JA2
versely, if d = —1,¢ =1, we take f= X>—Y?; if d # —1, there exists
a € k* such that (a, —d) = ¢ and we take f = aX2+adY2.

£ 2 wa ~rhA ~ L%k /”*2 Aiotinnt Frnnn A Tae; wha \W y havua 1ot

1i # = 3, W€ Cno € K7 /KTT Qistifict ITom —a,; 0y wiia nave just

k

seen, there exists a fo S
the form aZ?+g works. The case n = 4 is reduce d to the case n = 3 by

taking / = g(X,, X;, X3)+ X} +...+ X? where g
Corollary.—The number of classes of quadratic forms of rank n over
§) for p :L:')(rocn p = 2) is equal to 4 (..," 8)if n=1 tn7(rpcn 15) if

~XpJYr AU S 4 AR b Cp. s Cop. 1Y)
n—2 andtoS(resp 16) if n = 3.
Indeed, d(f) can take 4 (resp. 8) values and &(f) can take 2 values.

2.4. The real case

T AL L lon o i dantin Lacean ~L a1l . o 2l £.13 D 0 a1 ol
LCt y UCU 4 Juauldlule 10ULH1 O IdllKk 71 OVCD LIC 11ICIO 1N Ol 1Cdl [TUHIVCE
We know that f is equivalent to
XE+. +X2—Yi-... - Y}
. r i s

where r and s are two integers =0 such that r+s = n; the pair (r, s) depends
only on f; it is called the signature of f. We say that f is definite if r or s = 0,
1.e. if / does not change sign; otherwise, we say that f is indefinite. (This is
the case where f represents 0.)

The invariant ¢(f) is defined as in the case of Q,; due to the fact that

(-1, —1) = —1, we have

(s 1ifs =0, 1 (mod 4)
e(f) = (=1 1)/2—{ lifs =2, 3 (mod 4)
Moreover:
(A = (—1) = f Lif s = 0 (mod 2)
“\yJ) — 1) =

1=1ifs=1(mod 2).

We see that the knowledge of d(f) and &( j) is equivalent to that of the

T4

o ) and &(f) determine f up io equivalence
if n < 3.
One also checks that parts i), ii), iii) of th. 6 and its corollary are valid
Jor K (indeed their proofs use only the nondegeneracy of the Hiibert symbol,
and this applies to R); it is clear that part iv) does not extend.
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§3. Quadratic forms over Q

All quadratic forms considered below have coefficients in Q and are
nondegenerate.

3.1. Invariants of a form

Acin chan TIT
4 20 111 Ull“y ‘ll,

“«rn

2, we denote by V the uni
and the symbol oo, and we put Q, = R.
Let f ~a, X7 +...+a,X? be a quadratic form of rank n. We associate

to it the following mvanants.

a) The discriminant d(f) € Q*/Q*? equal to a, ... a,.

b) Let v e V. The injection Q — Q, allows one to view f as a quadratic form
(which we will denote f,) over QQ,. The invariants of f, will be denoted by
d,(f) and e,(f); it is clear that d,(f) is the image of d(f) by Q*/Q*? —Q*/Q¥*?;
we have

e(f) =

v

The product formula (chap. III, n° 2.1, th. 3) gives the relation
[Te() =1

veV

c) The signature (r, s) of the real quadratic form fis another invariant of f.

The invariants d,(f), ¢,(f), and (r, s) are sometimes called the local
invariants of f.

3.2. Representation of a number by a form

Theorem 8 (Hasse-Minkowski).—/n order that f represent 0, it is necessary
and sufficient that, for all v € V, the form f, represent 0.
(In other words: f has a ‘“‘global” zero if and only if f has everywhere a

11v1 11D 114y StVUd w1 U

“local” zero.)
The necessity is trivial. In order to see the sufficiency, we write f in the

form
f=a1X12+...+aanZ, aiEQ*.

by a,f, one can moreover suppose that a; = 1. We consider
e

7 2 A and >K
~, J, 4 ana =3.

Replacing f
h

Qanrnarnt I 14

A ~
ovpaliat ly
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+ agcag —_—
L1l CAdNO It —

1) The case n = 2.
We have f = X2—aX}; since f,, represents 0, @ is >0. If we write a in

a = Hpup(a)’
p

the fact that f, represents 0 shows that a is a square in Q,, hence that v,(a) is
even. From this follows that a is a square in Q and f represents 0.

-
o
[¢]
""’7
=
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ii) The case n = 3 (Legendre).

We have f = X2—aX?—-bX}; being free to multiply a, b, by squares,
we can assume that a and b are square free integers (i.e. v,(a), v,(b) are equal
to O or 1 for all prime numbers p). Also we can assume that |a| < |b|. We
use induction on the integer m = |a|+|b|. If m = 2, we have

ANS A& viils xia ~ iR

f=X{+ X7+ X3,

the case of X2+ X2+ Y. is excluded because f

v GOV ML A LL22 T ARG 22 LALILUELLS VULLARSv J oo ’ AN 2204

cases, f represents zero.
Suppose now that m > 2, i.e. |b| = 2 and write b in the form

b= ipl"‘pk’

where the p; are distinct primes. Let P be one of the p,; we are going to

vvvvv tha 2200 Al » Thig Alavsi~ € ~ — N (s~ Ne¢hha
PIUVC lllal a lD a unu’c ”lUuulUP 11iS lb ooviousiia = v \iivu 1/} UlllCl Wlbc

ais a p-adlc unit; by hypothesis, there exists (x, y, z) €(Q,)* such that

z? —ax?—by? = 0 and we can suppose that (x, y, z) is primitive (cf. chap. II,

n° 2.1, prop. 6). We have 22—ax*=0 (mod p). From this follows [ﬂd[, if
x = 0 (mod p), the same is true also for z, and by? is divisible by p?; since
v,(b) = 1 this implies y = 0 (mod p) contrary to the fact that (x, y, z) is
primitive. Thus we have x £ 0 (mod p), which shows that a is a square
(mod p). Now, since Z/bZ = 11Z/p,Z, we see that a is a square modulo b.
There exist thus integers ¢, b’ such that

t* = a+bb’
and we can choose ¢ in such a way that |¢| < |b|/2. The formula bb’ = t*—a
shows that bb’ is a norm of the extension k( /a)/k where k = Q or Q,;
from this we conclude (the argument is the same as that for prop. 1 of chap.
IIT), that f represents O in k if and only if the same is true for

= Xt—aX;-b' X}
In particular, f* represents O in each of the Q,. But we have:

t_;a§|£|

6’| = + 1 < |b|] because |b| = 2

Write b’ in the form b"u? with b”, u integers and b” square free; we
have a fortiori |b"| < |b|. The induction hypothesis applies thus to the
form f” = X}—aX?—b"X? which is equivalent to f’; hence this form
represents 0 in Q and the same is true for f.

i11) The case n = 4.

Write f = aX12+UA22—\LA3,2TuA4) Let v e V. Since f, represents O,
cor. 2 of prop. 3’ of n° 1.6 shows that there exists x, € Q¥ which is represented
both by aX2+bX? and by cX2+dX?; by part ii) to cor. of th. 6 (which

applies equally well to Q_ = R), this is equivalent to saying that

(x,, —ab), = (a,b), and (x,, —cd), = (c,d), forallveV.
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Since II (a, b), = Il (¢, d), = 1, we can apply th. 4 of chap. III, n° 2.2 and

veV

c,d),forallveV.
f the n hence in OO hv

viiw diwiiww Rii Ng

what we have just seen. Hence x presented by aX 2-l-sz, and the
same argument applies to cX;? +dX42, the fact that f represents 0 follows

The form aX2+bX2—xZ2 re

4 Ailv AVl WA v UA)

iv) The case n = 5.
We use induction on n. We write f in the form

f=h-g

with A = a1X12+a2X22, g = —(a; X3 +....+a,X>.

Let S be the subset of V consisting of oo, 2, and the numbers p such that
vy(a;) + 0 for one i = 3; it is a finite set. Let v € S. Since f, represents 0,
there exists a, € QF which is represented in Q, by 4 and by g; there exist

x; €Q,, i= .., n, such that

h(x], x3) = a, = 8(x3, . . ., X}).

But the squares of QF form an open set (cf. chap. II, n° 3.3). Using the
approximation theorem (chap. III, n° 2.2, lemma 2), this implies the existence
of x;, x, € Q such that, if @ = h(x,, x,), one has a/a, € Q** for all ve S.
Consider now the form f; = aZ%*-g. If v € S, g represents a, in Q,, thus also
a because afa, € Q*?; hence f; represents 0 in Q,. If v ¢ S, the coefficients
—as, ..., —a, of g are v-adic units; the same is true of d (g), and because
v # 2 we have ¢,(g) = 1. [This could also be deduced from cor. 2 to th. 1 of
chap. II, n° 2.2. combined with Chevalley’s theorem.] In all cases, we
see that f represents 0 in Q,; since the rank of f; is n—1, the inductive
hypothesis shows that f; represents 0 in Q, i.e. g represents a in Q; since A
represents a, f represents 0, and the proof is complete.

Oovallary 1 T ot ~ -~ X% T nvdow that Jf
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and sufficient that it does in each of the Q,,.
This follows from the theorem applied to the form aZ2-f.

Corollary 2 (Meyer).—A quadratic form of rank =5 represents 0 if and
only if it is indeﬁm'te (i e. if it represents 0 in R)

Lo iN iw el ) wilswaz i vaiiw

ach of the O
0 ;.

Corollary 3.—Let n be the rank of f. Suppose that n = 3 (resp. n = 4
and d(f) = 1.) If f represents 0 in all the Q, except at most one, then f repre-

sents 0.

Suppose that n = 3. By th. 6, f represents 0 in Q, if and only if we have:
(), (=1, =d(f), = ¢,(f).

7V v v DAY

But the two families ¢,(f), (—1, —d(f)), satisfy the product formula of chap.
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III, n° 2.1. From this follows that, if (), is true for all » except at most one

1 g te O
(%), is true for a h 8,/ represunm 0.

When n =4 a

being replaced by (—1, —1), = ¢,(f).
Dosas el o 1Y\ Quremsmncna thaot 22 _ D) and that £ ecamencanta N -n L n
NCmMuUIrny.— 1) oUppuUde Ulat 71 — 4 allvu iiat J 10pP1ostiin v lll alt ll VU

except a finite number. One can then show, by means of the theorem on
arithmetic progressions (cf. chap. VI, n° 4.3) that f represents 0.

2) Th. 8 does not extend to homogeneous polynomials of degree >3;
for example, Selmer has proved that the equation

3X344Y3+45Z3 =0

has a nontrivial solution in each of the Q, but none in Q.
3.3. Classification

Theorem 9.—Let f and f' be two quadratic forms over Q. For f and ' to

be equ ivalent over () it is necessary and vufhmpni that thev are equi uivalent

420 cLoaNl Larels 284,/ eLiCiEd LA 4

over ach Q..

The necessity is trivial. To prove the sufficiency, we use induction on
theranknoffand F. If n = ﬂ there is nothing to nrove, QOtherwise, there

L3 ¥ 3 410w 8 Ui j Qi g vtlAllx& LA o AV VWiowe tllwiw

exists a € Q* represented by f, thus also by f” (cf. cor. 1 to th. 8). Thus we
havef~aZ2 +g, [~ a22 +¢’. By th. 4 of n° 1.6, we have g ~ ¢’ over

far ol w -~ 1/ Th
\lv“’l aun veEvr. 1

hence f ~ f".

Corollary.—Let (r, s) and (', s") be the signatures of f and of f’. For f and
S’ to be equivalent it is necessary and sufficient that one has

d(f) = d(f), (r, ) = (5, ande(f) = &(f)forallveV.

ey 1. t o ~~ ol Avae

X n
g ~ g over Q,

y SRS o PO . Y 7oV o VA o) WP
Remark.—The invariants d = d(f), ¢, = ¢,(f) a1

They verify the following relations:
(1) e, =1 for almost all ve Vand Il ¢, = 1,

veV
(2) ¢, =1ifn =1orif n = 2 and if the image d, of d in Q¥/Q*? is equal
to —1,
(B)r,s=20and r+s = n,

Proposition 7.—Let d, (¢,),ov, and (r, s) verify the relations (1) to (5)

nvariant

ove. Then there exists qu auadratic fnrm of rank n over Q having f'nr

¢ UV w

(a

The case n = 1 is trivial.
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Suppose that n = 2. Let v € V. The nondegeneracy of the Hilbert symbol,
together with condition (2), shows that there exists x, € QF such that
(x,, —d), = ¢,. From this and condition (1), follows the existence of x € Q*
such that (x, —d), = ¢, for all v € V (chap. III, n° 2.2, th. 4). The form
xX?%+xdY? works.

Suppose that n = 3. Let S be the set of v € V such that (—d, —1), = —¢,;
it is a finite set. If v € S, choose in Q*/Q¥? an element ¢, distinct from the
image —d, of —d in this group. Using the approximation theorem (chap.

III, n® 2.2, lemma 2), we see that there exists ¢ € Q* whose image in each
of the Q*/Q*?, veS, is ¢, From what we have just proved follows the

existence of a form g of rank 2 such that
d(g) = cd, ¢(g) = (c,—d),e, forallveV.

The form f = c¢Z? +g thcn works. [Note that for n £ 3 we do not need to
consider the signature of the form, since conditions (3), (4), (5) determine
it as a function of d and ¢_].

When n = 4 we use induction on n. Suppose first that r = 1. Using
the inductiv h ntheqm we obtain a form g of rank n—1 which

a ‘J.\p“' v TaiwoaS UG A2 222 2822 =2

invariants d, (e )EV and (r—1, s); the form X% +g works. When r = 0,

we use a fo rm A of rank n—1 having for invariants —d, ¢,(—1, —d),, and
0 »n__ the form — Y2 il “r\r}rk

\U, n 1}, Lll\d ANV 11L FeN T e vy

Sums of three squares

Let n and p be positive integers. We say that » is the sum of p squares

if n is representable over the ring Z by the quadratic form X7+ .+X,,2,
i.e. if there exist integers n n, such that

Theorem (Gauss).—In order that a positive integer be a sum of three

squares it is necessary and sufficient that it is not of the form 4°(8b—1) with
a, b el.

(Example: if n is not divisible by 4, it is a sum of three squares if and only
ifn=1,2,3,5, 6 (mod. 8).)

Proof —We can suppose n is nonzero. The condition “n is of the form
4“(8]) \” is then pqnlvnlpnt to sav that —n is g sguare in n* (r‘hnn 1T,

to say tl squ (cha
n° 3.3, th. 4). But we have:

Lemma A.—Let a € Q*. In order that a be represented in Q by the form
f=X2+X2+X2it ; TN

Ill 1 112 T1l3 [2 ls It

not a square in Q,.
By cor. 1 of th. 8 we have to express that a is represented by fin R and

~11 MO Tha ~ooa AFD sivrne thn snAgcit w At N tha Ath

in all {p- 11€ Casc O R ZIVES tne pumuvu_y condition. On the other han

local invariants d,(f) and ¢,(f) are equal to 1. If p & 2, one has
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(=1, =d(f), = (=1, —1), = 1 = &,(f);

the corollary of theorem 6 thus shows that a is represented by f in Q,.
If p =2, we have (—1, —d,(f)), = 1 + ¢£,(f); the same corollary shows
that a m represented by fin Q, 1f ,nd only if a is different from —1 in

19 1L LJLLOLAIRL 111

Q3/Q5*%, i.e. if —a is not a square in Q,.

Now we must pass from representations in Q to representations in Z.

This is done bv means of the followin

o
a uv;nv UJ AMVRIIIS Vi v aVaviYViug

Ants 11n/~’un $1n frvna fL-n 212 v frer L \ hosn
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e,

coefficients. We make the following hypothesis.

(H) For every x = (xy,...,x,) € QP there exists yeZ’ such that
Six=y) < 1.

If n € Z is represented by f in Q, then n is also represented by f in Z.

H x=(x,...,x,)and y = (y;,...,y,) are two elements of QF, we
denote by x.y their scalar product Za;;x;y;. One has x.x = f(x).

Let n be an integer represented by f in Q. There exists an integer ¢ > 0

such that >z = x.x with x € ZP. Choose ¢ and x in such a way that ¢ is
minimum; we must prove that t = 1.

If zz=0 we have z =0 and f has integer coefficients. Because of the
t
minimality of ¢, this implies ¢ = 1.
Assume now that z.z &= 0 and put

a = y.y—n
b = 2(nt—x.y)
at 4 1 L
t = dadtl+o
x" = ax+by.
MNna I—\nn n | R ¢! ~ 7 nnAd
uné nas a, o, it € 4, ana
x'.x' = a*x.x+2abx.y+b%y.y
= nzfzm lnl\(’)uf;‘-\\ ,ll\zlmin\
[ IlTuU\Llll U}TU \IlTu}
= n(a*t* + 2abt + b*)
= t"’n

Moreover:
tt' = at* +bt = t*y.y—nt* +2nt* -2t x.y
= 2y -2t x.p+x.x = (ty—x).(ty — x)

= t2z.z,



Appendix 47

hence t' = t z.z; since 0 < z.z <
onc

0 < t' < t. This contradicts the
mmlmahfv of t and ¢ f

”

To prove the theorem, it suffices now to check that the form f X2+ 1

Ay T A3 SAUSLCS condaition \11 0.

J
Q> we choose (y,, ¥,, y3) € Z> such that
T(x;—y)? £ 3/4< 1.

V1l 1wviilliia

Corollary 1 (Lagrange).—Every positive integer is a sum of four squares.

Let n be an integer >0. We write n in the form 4°m, where m is not divis-
ibleby 4. If m =1, 2, 3, 5, 6 (mod 8), m is a sum of three squares, and the
same holds for n. Otherwise m = —1 (mod 8) and m—1 is sum of three
squares; in this case m is a sum of four squares, and the same holds for n.

Corollary 2 (Gauss).—FEvery positive integer is a sum of three triangular
numbers.

(A number is called “triangular” if it is of the form m(m+1)/2 with
meZ)

T )

Let n be a positive integer. By applying the theorem to 8n+3, we see
that there exist integers x,, x,, x; such that

One has
x}+x24+x2 = 3 (mod 8).

But the only squares in Z/8Z are 0, 1 and 4; a sum of three squares in
Z/8Z can be equal to 3 only if each of its terms equal 1. This shows that the
x; are odd, and one can write them in the form 2m;+1 with m; an integer.
We have

i=3 i=3
y D) (S5 o 1y223) = Lgna3—3) =
i=1 2 8 ‘\il;ll ) ’ . /’ 8\ g



Integral Quadratic Forms with Discriminant + 1

§1. Preliminaries
1.1. Definitions

Let n be an integer =0. We are interested in the following category S,:

An object E of S, is a free abelian group of rank n (i.e. isomorphic to Z")
together with a symmetric bilinear form £ x E — Z, denoted by (x, y) — x.y,
such that:

(i) The homomorphism of E into Hom(E, Z) defined by the form x.y is an
isomorphism.

One sees easily that this condition is equivalent to the following (cf. BOURBAKI,
Alg., chap. IX, §2, prop. 3):

(1) If (e;) is a base of E, and if a;; = e;.e;, the determinant of the matrix
A = (a;;) is equal to +1.

The notion of isomorphism of two objects E, E’ € S, is defined in an ob-
vious way. One then writes E ~ E’. It is also convenient to introduce
S=uS,,n=0,1,...

If E€eS,, the function x — x.x makes E a quadratic module over Z (cf.
chap. IV, def. 1, n° 1.1). If (¢,) is a basis of F and if x = 2x,e;, the quadratic
form f(x) = x.x is given by the formula

f(x) = Zaux,xj Wlth ai‘l = e,-.e

Na.xi4+ 2
2 Gixi+ 2
1

The coefficients of the non-diagonal terms are thus even. The discriminant
of f (i.e. det(a;;)) is equal to + 1. Changing the basis (e;) means replacing the
matrix 4 = (a;;) by ‘BAB with B € GL(n, Z). From the point of view of the
form f, this means changing the variables (x;) by the linear substitution
with matrix B; the form so obtained is called equivalent to the form f. (Ob-
serve that this is an equivalence over the ring Z of integers; it is finer than the
equivalence over Q studied in the preceding chapter.)

1.2. Operations on S

Tat I L'’ - C Wa Aannta ey I\ L s¢hhna diinnd ciizas ~Ff I o
it L, £ €5, Wl QCNotC 0oy £ @ L n€ airect sumi O1 L an

together with the bilinear form which is the direct sum of those on E and E’';
by definition (cf. BoUurRBAKI, Alg., chap. IX, § 1, n° 3):
(x+x)(y+y) =xy+x'.y’ ifx,yeEandx’,y €F.
48
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From the point of view of ‘“‘quadratic forms™ this operation corresponds to
that of orthogonal direct sum denoted by @ in chap. IV.

One can also define tensor products E® E’ and exterior powers ATE
(BourBAKl, loc cit., n° 9); we will not need them.

1.3. Invariants

1.3.1. If E€ S,, the integer
eate d o = n,tll\illb&l

1.3.2. Let E e Sand let V' = E ® R the R-vector space obtained by extending
the scalars from Z to R. The quadratic form of V has a well defined signature

/.. ..\ IAL.—“. TV 290 9 AN TL $an
) \viiap. 1v, 11 £.7%). 111

(E)=r—s
is called the index of E. One has
—rHE)S 7(E)SrE) and r(E)= 7(F)(mod?2).

Recall that F is called definite if 7(E) = +r(E), i.e. if x.x has constant
sign; otherwise E is called indefinite.

1.3.3. The discriminant of E with respect to a basis (.o\ does not denend on

vwe LU \~iJ ..v'.. 2 = powald

the choice of this basis. Indeed, changmg the basis (e;) multiplies the dis-
criminant by det(X'X) = det(X)? where X is an invertible matrix over Z;
the determinant of X is equal to + 1, and its square is equal to 1.

The discriminant of E is denoted by d(F); one has d(E) = +1 If
V = E ® R is of signature (r, s), the sign of d(E) is (—1)*; since d(F) =
we get the formula:

d(E) = (_1)(r(E)—r(E))/2.

1.3.4. Let E € S. We say that E is even (or of type II) if the quadratic form

associated with E takes only even values; if 4 is the matrix defined by a

basis of E, this amounts to saying that all the diagonal terms of A are even.
If E is not even, we say that E is odd (or of type 1).

1.3.5. Let E€ S and let E = E/2E be the reduction of E modulo 2. It is
a vector space of dimension r(E) over the field F, = Z/2Z. By passage to

nnnhenf the form x. ¥ defines on E a form x.v which is qvmmptrm and of

vawaisy vailw aSa 2zl S wAial aNsx oy Aiiiiiwviaw

dlscrlmmant +1= 1. The associated quadratic form x.x is additive:
(X+7).(F+)) = ZX+7.J+2%F = ZX+7.)

Thus it is an element of the dual of E. But the bilinear form %x.y is non-

degenerate; it defines an 1somorphlsm of E on its dual. From this we see that

1N A AT PRSP

here exists a canonical etemem % € E such that

-

a.x = x.x forall xeE.
Lifting & to E, we obtain an element u € E, unique modulo 2E, such that

ux = x.x(mod2) forallxeckE.
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Consider the integer w.u. If we replace u by u+2x, u.u is replaced by

(1042 (114D = vt d(u x4+ N\ = 1.1 (mod R)
A\ | &V | vy “vesy | \Mrevv | srevvy Meis 1IN Uy
The image of w.u in Z/8Z is thus an invariant of E; we denote it by o(E).
If EF 1c nf tyna IT fl‘\o fAarm + ¥ 1c 7arn (in athar warde v v 1e Altornating)
11 Ls 10 VIl L]P\I Ahy LIV 1VILLIL AeA 1D LIV \lll Utilivi YWULUD, /\.u)’ 10 Uitcrriueeirn }
and we can take u = 0, hence o(E) = 0.
1.3.6. Let p be a prime number, and let V, = E® Q, be the Q,,-vector

..... amalaea l.‘__‘..- ly VPN o\ 2 2a % 1o 2oE 4 34

Spatc UULdlIlCU ll rom B Uy C)(lCIlUl[lg I.IlC Sidldald 110111 £, L0 \ZP lllC lIlleldllL
e(V,) = +1 of V, defined in chap. IV, n° 2.1 is a fortiori an invariant of E;
we denote it by sp(E). One can prove that:

e (E) = 1ifp # 2
e,(E) = (— 1), where j = 3(d(E) +r(E)—o(E)—1).

This is seen by splitting £ ® Z, in an orthogonal direct sum of Z,-modules
of rank 1 (resp. rank 1 or 2) if p % 2 (resp. p = 2). Since we d not use

these formulas. we leave the details of the verification to the reader (see also
W L AW AW A \va HAINT
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J. CasseLs, Comm. Math. Helv., 37, 1962, pp. 61-64).

nr' . ara ~Af tuna TT Nna lhao
u Lz all VUl t_ypc 11. JUlIv nas:

r(E) = r(E\)+r(E,), 7(E) = 7(E;)+7(E,)

SN AT\ B 78 ~\ U /' A TN 720 BN
o(£) = o(L,)+0o(Ly), a(L) = a(E).a(L;).

1.4. Examples

1.4.1. We denote by I, (resp. I_) the Z-module Z with the bilinear form

xy (resp. —xy); the corresponding quadratic form is + x? (resp. —x?).
If s and t are two nnqmve m‘reoerc we denote hv vl @ t_ the direct sum

of s copies of 1, and t copies of I_; the correspondmg quadratic form is

s t

X x? — Z y?. The invariants of this module are

i=1 j=t

r=s+t, s—t,d = (-1), 0 = s—t(mod 8)
Acida tha trivinl ~Anoa fo N — N N\ tha mndnla of m ¢+T o nf tuma T
MADIUC LI Lllvial vadsy \ ’ l} — U}, ti1C 111Ul Uil 44 U 1. 10 UL L_YPU x.
. (01
1.4.2. We denote by U the element of S, defined by the matrix 1 o) The

associated quadratic form is 2x,x,; U is of type II. One has:
r(U) =2,7(U) =0,dU) = —1,0(U) =0

1.4.3. Let k be a positive integer, let n = 4k, and let ¥ be the vector
space Q" with the standard bilinear form Xx;y; corresponding to the unit
matrix. Let E; = Z" be the subgroup of V formed from the points with

integer coordinates, endowed with the bilinear form induced from that of V;
E, is an element of S, isomorphic to nl,. Let E, be the submodule of E,
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formed of elements x such that x.x = 0 (mod 2), i.e. Zx; =0 (mod 2).
One has (E,.: E, \ = 2. Let E be the submodule of V oenprnfpd hv F and

\—0- Dvirviiiivie

bye=(,..., %). One has 2e € E, (since n = 0 (mod 4)) and e ¢ E|, hence
(E:E,) = 2. For an element x = (x;) of V to belong to E, it is necessary and

n
2x;€Z, x;—x;eZ, Y x;€2L.
i=1
Then we have x.e = $Xx; € Z; since e.e = k, this shows that the form x.y
takes integral values on E. Moreover, the fact that £, has the same index in E,
and in E shows that the discriminant of E is equal to that of E,, that is to say

+ 1. The quadratic module E is thus an element of S, = S,,; we denote it

by I',. When k is even (i.e. when n = 0 (mod 8)) e.e = k is even and this
implies that x.x is even for all x € E; ', is thus of type Il when n = 0 (mod 8).
One has

r(FSm) = 8m’ T(FSm) = 8m9 U(FSM) = O’ d(FBm) = 1.

The case of I'y is particularly interesting. There are 240 elements!) x e I'g

such that x.x = 2; if (e;) denotes the canonical base of QB, these are the
vectors

8 8
tete(i#£k) and 1Y eene= +1,[[e =
i=1 i=1

[The mutual scalar products of these vectors are integers; they form what is

called in Lie group theory a “root system of type Eg see, BOURBAKI, Gr. et
Alg. de Lie, chap. VI, §4, n° 10.]
One can take as a basis of I'g the elements

'i'(el'*‘eg)—‘&‘(ez'*‘. . .+e7), el+ez, and ei—e,-_l(2 é i = 7)

The corresponding matrix is

[ 2 o -1t 0o o o o o\
0 2 0 -1 0 0 0 0
-1 0 2 -1 0 0 0 O
0 -1 -1 2 -1 0 0 0
0 0 0 -1 2 -1 0 o0
o 0 0 0 -1 2 -1 0
O 0 0 0 0 —1 2 -1
\'o o o o o o -1 2f

For m 2 2 the vectors x € I'g,, such that x.x = 2 are simply the vectors
+e;+e(i # k); note that tnev do not generate I'g,., contrary to what

number of Xe Fs such that XX = 2N is equal to 240 txmes the sum of the cubes of dwnsors
of N.
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1.5. The group K(S)

Let E, E’' € S. We say that E and E’ are stably isomorphic if there exists
F e Ssuchthat E® F ~ E’ @ F; this is an equivalence relation. We denote
by K, (S) the quotient of S by this relation and if E € S, we denote by (F)

the class of F in K ,(S). The operation @ defines by passage to quotient a

composition law + on K, (S); this law is commutative, associative, and
0 of the module 0 € §. One has

i a AW a I ¥4 x i v LIV Wivw v Nsiivw 11880

(E® E") = (E)+(E).
Moreover, if x, y, z € K,(S) are such that x+z = y+z, one has x = y,
the proof is immediate. This allows us to define the group K(S) from the
semi-group K,.(S) (exactly as one defines Z from the set Z, of positive
integers): By definition, an element of K(S) is a pair (x, y) with x, y € K,(S),
two pairs (x, y), (x’, ) being identified if and only if x+y’" = y+x’. The
composition law of K(S) is defined by
(x5, )+, y) = (x+x', y+y’).

It makes K(S) into a commutative group with neutral element (0, 0). We
identify K, (S) with a subset of K(S) by the map x +— (x, 0). Every element of
K(S) is a difference of two elements of K,(S), thus can be written in the
form (E)—(F) with E, F e S. One has
(E)—(F) = (E)—(F') in K(S)

if and only if there exists Ge S such that F®O F @ G~ E' @ F® G,
i.e. if and only if E® F’ and E’ @ F are stably isomorphic.

Universal property of K(S).—Let A be a commutative group and let

f: §— A be a function such that f(F) = f(E,\)+f(E,) if E~ E, ® E;;
we then say that fis additive. If x = (E)—(F) is an element of K(S) we put

LYV LT\ LT\,
J\Aa) =J\L)—Jj\rj,
this does not depend on the chosen decomposition of x. It is obvious that
the function f: K(S) — A thus defined is a homomorphism. Conversely,

cvery uOmeGi'puiSlu _/ n\o} — A 5i'v'eS, uy COi‘ﬂpOSiLiOﬁ with § — K(o),
an additive function on S. We express this ‘“universal”’ property of K(S)
by saying that K(S) is the Grothendieck group of S relative to the operation @.
In particular, the invariants r, 7, d, o of n° 1.3 define homomorphisms
r:K(S)—>2Z, 7:K(S)—2Z, d:K(S)— {1}, o:K(S)—>Z/8Z.

minrtr=rmod 2and 4d = (_1)("’1’)/2.

2.1. Determination of the group K(S)

Theorem 1.—The group K(S) is a free abelian group with basis (I ,) and (I_)
(The proof will be given in n° 3.4.)
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(1-)

1

In other terms, all f € K(S) can be written uniquely as f = s.(/,)+¢t.(1_
with ¢ ¢ 57 MNDne hae (AN — Lt Af) — c_1t. u/hu‘h chnu/e that ¢ and
YYALALX l), & b \Siilw 180 7 \J } (%) 1 l’ . \J l (%] l« i1wil JIINV Y Liiean w0 A s
are determined by r and 7. From this follows:

Corollary 1.—The pair (r, 1) defines an isomorphism of K(S) onto the
subgroup of L x Z formed of elements (a, b) such that a = b (mod 2).

Hence:

N

f"‘ -n" e J Unu nNrrront E' MI" E’
U i y )

2% e [ Ly
I.Ul.lal.y ™ 1 UI lVVU ClCl’lCIllO

Af ¢t~ h tahlyvy jonmanrnhin
UJ [ B A VA V4 [

€ Siaoiy isomorpnriic

it is necessary and sufficient that they have same rank and same index.

,1\) defines
v/

) =71, ®I_,but Uand I, @ I_ are

i—uo(\

am
[Note that this does not imply E ~ E’ For example U = (

in K(S) the same element as ((l) _(1)
of different types.]

Theorem 2.—One has o(E) = 7(E) (mod 8) for every E € S.

LIINAN AL i I1VUIULVLWVAL 111V U’ uuu U, Al llUlllUlllUlylllDlllﬂ Vi Iy \U} 151 l_A/ \oy ¥
which are equal on the generators 7, and 7_ of K(S); hence they coincide.

Corollary 1.—If E is of type 11, one has (E) = 0 (mod 8).
Indeed o(E) = 0
(Note that this implies that r(E) = 0 (mod 2) and d(E) = (—1)"®"2)

Noawnllase, Y £ U s Aofrnits mmd ~AF $ssma TT N1 dava wf E\ — N (enn~nd Q)
\,uunuuy Lso —1[ wu JLIHJC unag J 13 [IC 1L, UNC 1o I\L} = V \nuvu oj.
Indeed we have 7(E) = +r(F) if E is definite.

Remarks—1) Conversely, we saw in n° 1.4 that for all n divisible by 8,
there exists F € S, which is positive definite and of type II.

2) The congruence o(E) = 7(E) (mod 8) can also be deduced from the
product formula Ile(F) =1 (see chap. IV, n° 3.1) combined with the
values of ¢,( E) given (without proof) in n° 1.3.6.

Let E € S. One says that E represents zero if there exists x e E, x % 0,
such that x.x = 0. This is equivalent to saying that the corresponding
quadratic form Q(x) represents 0 over Q in the sense of chap. IV, n° 1.6;
indeed, one passes from a rational zero to an integral zero by a homothety.

Theorem 3.—If E € S is indefinite, E represents zero.
(The proof will be given in n° 3.1.)

t/

Theoremd4.—IfE € S'is mdpﬁmtp and of ty, pe 1, E is isomo) ph_ tosl,

2I-A¥EL R 2R 25 22 2 LAY

where s and t are integers = 1.

[The corresponding quadratic form is thus equivalent over Z to the
5 (2
i=1 " .

(The proof will be given in n° 3.3.)

(B

‘F{'\ r

AN\J1 111

\'N'

<1
]

Il [}4-.
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Corollary.—Let E and E' be two elements of S with the same rank and
index. Then either E® I, ~FE' @I, or E®I_~FE &®1I_.

This is clear if £ = 0. Otherwise, one of the two modules E® I, or
E @ 1. is indefinite. Suppose that the first is. Since E and E’ have the same

cionature. F’' @ 1ic aleno indefinite R\/ anr\l\nno theorem A we see that

Sipliiituiv,y av \J ‘+ A0 QAU LLANAWAZAIALWe Gy il tiiviiwvi Uww viidsn

E®I,and E’' @ I, areisomorphictos/, @ tI_ ands’'l, @ t'I_ respectively.
Since E and E’ have the same signature, we have s = s’ and t = t’, hence the

agy Ilf
Lvoult

Theorem 5.—If E € S is indefinite of type 11, and if 7(E) = 0, then E is
isomorphic to pU @ ql'y where p and q are positive integers.

[When (E) £ 0, one has a corresponding result obtained by applying
the theorem to the module-E deduced from E by changing the sign of the
quadratic form.]

(The proof will be given in n° 3.5.)

Note that g = {+(F) and p = 3(r(E)—7(E)). This shows that E is
determined up to isomorphism by its rank and its index. Since the same is
> for type I (cf. theorem 4), we get:

2.3. The definite case

One does not have a structure theorem, but only a finiteness theorem:
for all integers n, S, contains but a finite number of positive definite classes.
This follows, for instance, from the ‘“‘reduction theory” of quadratic forms.
The explicit determination of these classes has been made only for small
values of n (for n < 16, see M. KNESER, Archiv der Math., 8, 1957, pp. 241-250).
One can get this from the Minkowski-Siegel formula (Kneser uses a different
method). I will just state this formula (I restrict myseilf, for the sake of
simplicity, to type II—there are analogous results for type I):

Let n = 8k be an integer divisible by 8. Let C, denote the set of iso

L2222 pwr ReaVRaIURN MWV VW ViAd Swe v-

morphism classes of elements E € S, which are positive definite of type II.
If E € C,, let Gg be the group of automorphisms of E; it is a finite group since
it is a discrete subgroup of the orthogonal group, which is compact; let gg
be the order of G. Put:
Mn = Z l/gE
EeC,
This is the “mass” of C,, in Eisenstein’s sense, i.e. the number of elements
E of C,, counted each with the multiplicity 1/gz. The Minkowski-Siegel

1 .
formula®™ gives the value of M,:

B, i=4k-1p.
)M, = =2k =
*) 8k jl:ll 4j

M For a proof of this formula, cf. C. L. SIEGEL, Gesamm. Abh., 1, n° 20 and I1I, n°® 79.
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. 1 1
where n = 8k, and the B; are the Bernoulli numbers (B, = o B, = wn
cf. chap. VII, n° 4.1).
(Here are some approximate values of the M,:
AL 109 .1 4261 AL __1N—-18 .9 400¢ AL 1015, 70147
lVla—lU )\1-"’.7.)‘-.-.,17[16—1'.] A L5200V . ..,1124 1V A T.TIV1 «9

M32 = 107)(40309 ey M‘o = 1051 ><4.3930 . )
This formula gives a method to prove that a subset

VU o

100 C,; Il suffices to check that the sum of the l/gE, for

M, (if C' £ C,, this sum is <M,).

hj A
(*]
S .
@
S
§

Examples
i) n = 8,i.e. kK = 1. One can show (see for instance BOURBAKI, Gr. et Alg.

de Lie, chap. VI, §4, n° 10) that the order of the group of automorphisms of
Ty is 21435527 Moreover, formula () gives Mg = 2~ 14 3=5 §-2 7-1 . By

comparing, we see that Cg is reduced to the smgle element T'g, a result duc to
Mordell.

i) n = 16. We know two elements of C,s: I'ys and I'y @ I's. One can
prove that the corresponding orders gy are respectively 2!'°(16!) and
2293105472 Moreover M, = 691.273°37105747-211-113~1 and it is easy
to check that

691/239310547211.13 = 1/215(16!)+1/2293‘°5“72.
We thus have C;4 = {I'y4, I's @ I's}, a result due to Witt.

i) n=24. The determination of C,, has been made in 1968 by H
Niemeier”; this set has 24 elements. One of them (discovered by Leech a
propos of the sphere-packing probiem in R?*) is particularly remarkabie; it
is the only element of C,, which contains no vector x with x.x = 2. Its group
of automorphisms G has order:

3
The quotient G/{+ 1} is the new simple group discovered by Conway®.

T o LI “  AINT el 0 S A e N D arn cmn S L
1v) n = JL DHILC 1Vl32 2~ “4.1V a4alld gE = 4 10Ul dll D, WC MC lLilal \.«3 11

more than 80 million elements; they have not been classified yet.

1as

§3. Proofs
3.1. Proof of theorem 3

Let E€S, and let V= E® Q the corresponding Q-vector space.
Suppose E is indefinite. We must show that F (or V) represents zero. We

consider several cases:

() See H. NIEMEIER, J. Number Theory, 5, 1973, pp. 142-178.

@ See J. H. CONWAY, Proc. Nat. Acad. Sci. USA, 61, 1968, pp. 398-400, and Invent.
Math., 7, 1969, pp. 137-142.
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i) n = 2. The signature of V is then (1, 1), hence d(E) = —1. Since —d(F)
i) n = 3. Let f(X,, X,, X;) =2a,;;X;X; be the corresponding quadratic

form with respect to a basis of E one has a;; €Z and det(q;;) = +
If p is a prime number #2, the form deduced Frnm fhv reduction mod |n n

ARiliw ARWARLIU WA dwy CEIW ANJALI) UMW WWWL LA ViLX AWNiViw LA ad nAAvuu-v F

has a nontrivial zero (chap. I, n° 2.2), and this zero can be lifted to a p-adic

zero (chap. II, n° 2.2), and cor. 2 to th. 1). Hence f represents O in all the

n { » —L \ fl“f' nlﬂf\ |ﬂ D . k‘l falas o Q l\'r f“\ Q
Np\P F £), alib ais0 1 ~; Oy COI. 5 Of .

that f represents 0 in Q.

iii) n = 4. The same argument as above shows that the quadratic form f
represents O in all the Q,, p # 2, and in R. If the discriminant d(E) of f is
equal to 1, this suffices to imply that f represents 0 in Q (cor. 3 to th. 8 of
chap. 1V, n° 3.2). Otherwise one has d(E) = —1 and d(F) is not a square
in Q,; by th. 6 of n° 2.2. of chap. IV, this implies that f represents 0 in Q,;
the Hasse-Minkowski’s theorem (chap. IV, n° 3.2, th. 8) then shows that f
represents 0 in Q.

C
Q

iv) n = 5. One applies Meyer’s theorem (chap. IV, n° 3.2, cor. 2 to th. 8).

Lemma 1.—In order that F, with the form x.y induced from that of E,
be in S it is necessary and sufficient that E be the direct sum of F and F'.

If E= F@® F’, then one has d(E) = d(F).d(F’) from which d(F") = +1.
Conversely if d(F) = +1, one has clearly F N F’ = 0; moreover, if x € E,
the linear form y > x.y(y € F) is defined by an element x, € F. We then
have x = xy+x;, with xo e F and x, e F’, hence E = F @ F’.

Lemma 2.—Let x € E be such that x.x = +1 and let X be the orthogonal
complement of x in E. If D = Zx, one has E= D @ X.

One applies lemma 1 to F = D. (If, for instance, x.x = 1,one has D ~ I,
hence E~ 1, @ X)

An elemen
4 All wiwliliuwi

group nE (n 2 2),1.e., if one cannot divide it by any integer = 2. Every non-

zero element of E can be written in a unique way in the form mx with m = 1

nAd Pe b LIA
aiia x lllUlVl 1UIC.

c-+
<
N
ti'i

o e, e
indinicithls if it 1
HikivwtT 11 1L 1

w
[
-
C

Lemma 3.—If x is an indivisible element of E there exists y € E such that
x.y = 1.

Let f, be the linear form y— x.y defined by x. It is a homomorphism
E — Z. Moreover, f, is indivisible since x is and since x.y defines an iso-
morphism of E onto its dual Hom (E, Z). From this follows that f, is surjec-

tive (otherwise, one could divide it by an integer =2) and there exists thus
y € E such that x.y = 1.
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3.3. Structure theorem (odd indefinite case'™)

Lemma 4.—Let E € S,. Suppose E is indefinite and of type 1. There exists
FeS,_,suchthat E~I1, ®@1I_® F.

Rv theorem '2 there evicte ye F v £ 0 ene - 1
UJ CAIAWNJA Wwili ViIAWA W WALIWLD s .‘-l £ 7— WV JWUWil il e s A A

divide x by an mteger we can suppose x is indivisible; by lemma 3 a
there exists thus y € E such that x.y = 1. One can choose y of such tha

ndd Tmdand ciinnmngce thn L ia nf tyma thara avig
lD vuy. 111ULuU, dDUppuUsLy Lllal. _}/ )/ lb CVCll Dllle L iS O1 lyPC l LllClC CAILD

such that ¢.f is odd. Put y’ = t+ky and choose k such that x.y’= 1,
k = 1—x.t;one has y'.y’ = t.t (mod 2) and y’.y" is odd. We can thus suppose
that y.y = 2m+1. Put then e, = y—mx, e, = y—(m+1)x. One checks
immediately that e,.e; = 1, e;.e, = 0, e,.e, = — 1. The submodule G of E
generated by (e,, e,) is isomorphic to I, @ I_; by lemma 1, we have thus
E~xI, @1 @®F,with Fe§,_,.

Proof of theorem 4.—We use induction on n. Let E € S, with E indefinite
and of type I. By lemma 4, E~ I, @I_® F. If n =2, we have F=0

and the theorem is proved. If n > 7 we have F + 0 and one of the modules

CRAANA ViiWw VEAWNIA Wik AT | Rie Y SRiie Vidw Vi vidw RAiVUNSwiwD

I, @ F, I_ @ F, is indefinite, for mstance the first one. Since 7, is of type I,
the same is true for 7, @ F and the inductive hypothesis shows that I, @ F

1 of the fa ™ AT - thi at E~ T M (b
1S O1 inc iorm u1+ u Ur_, Hatv L — di 4 o \UT 1}1

3.4. Determination of the group K(S)

Let Ec€S, E#0. Then E® I, or E® I_ is indefinite and of type I.
Applying theorem 4, we see that the image of E in K(S) is a linear combina-
tion of (/,) and of (7_). This implies that (7,) and (7_) generate K(S). Since
their images by the homomorphism

7 7
V 7. 7]

N
—

\

)
are linearly independent, (7/,) and (/_) form a basis of K(S).
o BV 4 [ o7 PSPy PR AU SRS SR A e )
2.0. Ddlructure tneorem (even naejniie case)

Lemma 5.—Let E € S. Suppose E is indefinite and of type 11. There exists
FeS such that E~ U@ F.

We proceed as in the proof of lemma 4. Choose first x e E, x £ 0, x
indivisible such that x.x = 0; choose next y € E such that x.y = 1. If
y.y = 2m, we replace y by y—mx and obtain a new y such that y.y = 0.
The submodule G of E generated by (x, p) is then isomorphic to U; by lemma
1 one has E~ U@ F with Fe S.

Lemma 6.—Let F,, F, € S. Suppose that F, and F, are of type 1l and that
I,®I_ OF, ~1,®I_@®F, Then U® F, ~U® F,.

(M The method followed in this section has been shown to me by Milnor, together
with the idea of introducing the group K(S).
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To simplify the notations, we put W=1, ®@I_, E; = W® F,;, and
Vi=E, ® Q. In E, let Fo be the qnhormm of elements x such that x.x =0

(mod 2), it is of mdex 21in E,-. One sees 1mmed1ately that E) = W %@ F, where

W?° is the set of elements X = (x,, x,) of W such that x; = x, (mod 2).
T ot I+ ha the ¢“dnal” nf‘ l? V. 1a theget of v e V cnnb t

Adw L ‘Jl Uwvw viiw N lll [ 4 i, lewe L1l OWL VI )’ v Uwil

1
all x € E?. It is clear that E,-’r = W* @ F,; where W* is the set of (x,, x;)
such that 2x1 eZ, 2x,€Z, x,— ) e€Z. One has E? < E; < E;' and the

RS Sy FO 4 jonsmmenmbhina ¢~ LIZ7H 1007 o 20 2o AF trmn 1D Thawra
quoticit L’ /L, i8 1ISOmorpnic to w ¥, It IS @ BIOouUp O1 type («, 4} There

exist thus three subgroups strictly between E9 and E;*; they correspond to
the three subgroups of order 2 in a group of type (2, 2). One of them is E;
itself; the two others will be denoted by E; and E;. Here again we have:

El" = W' (“B Fi and E"” = W” @ Fi

a
a8

where W’ and W" are defined in an obvious way. One checks that W’ and
W" are isomorphic to U (for instance, take for basis of W’ the vectors
a=(4), b=(, —1); one has a.a=bb =0, ab=1; for W", take
(3, = and (1, 1)). Letthen f: WO F, - W@ F, be an isomorphism. It

\Z? Kl AviwV Vikwaia &Kazx AL praasoRil.

extends to an 1somorph1sm of V, onto V2, which carries E, ontp E,, thus

also EQ onto E and E;* onto E,’. Thus it carrles also (E{, E) onto either
EF'!' "N ar (F7 E Qinca E!

\LJZ, 142/ Vi \‘.42, 142/ Ulll A L4i all

that U@ F, ~ U@ F,.
Proof of theorem 5.—We first prove that if E,, E, €S are indeﬁm'te of

$asne arnio wrenls i amiae o P 5 Tamiiinemls De; 1asan sann

Ly, (4 ll anu nuve me sSame rank ana same mue.x, mey are lDUfﬂUf[lIlic DY IClllilia
S5, one has £, =U® F,, E;, = U® F,; it is clear that F, and F, are of
type II and same rank and same index. The modules 7, @ I_ & F, and
I, ® I. @ F, are indefinite, of type I, of same rank and index. By theorem
4, they are isomorphic. Applying lemma 6, we see then that £, and E, are
isomorphic, which proves our assertion.

Theorem 5 is now clear: if E is indefinite, of type II

determine integers p and g by the formulas

= .Lq-(F'\

n = Mr(FY— ~(E))
‘1 ‘\*~J)s ' o 2Z\' \*~) F\*~))*

By applying the above result to the modules E and pU @ gI'g one sees that
these modules are isomorphic.
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The Theorem on Arithmetic Progressions

ollowing theorem, conjectured

Theorem.—Let a and m be relatively prime integers =1. There exist
infinitely many prime numbers p such that p = a (mod m).

The method we follow (which is that of Dirichlet himself) uses the
properties of the L-functions.

§1. Characters of finite abelian groups

Let G be a finite abelian group written multiplicatively.

Definition 1.—A character of G is a homomorphism of G into the multi-
plicative group C* of complex numbers.

The characters of G form a group Hom (G, C*) which we denote by G:
it 1s called the dual of G.

Example. Suppose that G is cyclic of order n with generator s. If
x:G — C* is a character of G, the element w = x(s) satisfies the relation
w" = 1, i.e. is a nth root of unity. Conversely every nth root of unity w
defines a character of G by means of s*+— w®. Thus we see that the map
x > x(s) is an isomorphism of G on the group , of nth roots of unity. In
particular, G is cyclic of order n.

Prongsition 1.—1ot H be a cuboroun of G ery character of H extends

Proposition 1.—Let H be g subgroup of G. Ev
to a character of G.

We use induction on the index (G:H) of H in G. If (G:H) =1, then
H = G and there is nothing to prove. Otherwise let x be an element of G
not contained in H, and let n be the smallest integer > 1 such that x" € H.
Let x be a character of H, and let ¢t = x(x"). Since C* is a divisible group,
one can choose an element w € C* such that w" = . Let H' be the subgroup
of G generated by H and x; every element A’ of H' can be written A’ = hx*®
with a € Z and h € H. Put
x'(h') =

v (h\u)a
AN .

One checks that this number does not depend on the decomposition hx® of
h' and that x': H’ — C* is a character of H' extending x. Since we have
(f' H’\ < (f‘ H\ the inductive h\/nnthpem allows us to extend v to a

character of G.

(=5}
iy
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Remark. The operation of restriction defines a homomorphism
p: G A

and prop. 1 says that p is surJectnve Moreover the kernel
characterq of G which are trivial on H; it is thus isom

(G/H ) dual to G/H. Hence the exact sequence:
{ } (‘ —> ﬁ — ﬁ — !

Proposition 2.—The group G is a finite abelian group of the same order as G.
One uses induction on the order n of G, the case n = 1 being trivial.

If n = 2, choose a nontrivial cyclic subgroup H of G. By the remark above,

the order of G is the product of the orders of A and of (6/}-1). But the

order of H (resp. of G/H) is equal to that of its dual, because H is cyclic
(resp. because G/H is of order strictly smalier than n). We conclude from
this that the order of G is the product of the orders of H and of G/H, hence
is equal to the order of G.

Remark. One can prove a more precise result: G is isomorphic (non-
canonically in general) to G. This is shown by decomposing G into a product

of cvclic erouns.
A Jvllv 5 y

If xeG the functlon x — x(x) is a character of G. We obtain thus a

homomorphism ¢: G — G

Proposition 3.—The homomorphism ¢ is an isomorphism of G onto its
bidual G. .

Since G and G have the same order, it suffices to prove that « is injective,
i.e. that, if x e G is #1, there exists a character y of G such that x(x) + 1.
Now, let H be the cyclic subgroup of G generated by x. It is clear (seethe
above example) that there exists a character y of A such that x(x) + 1 and
prop. 1 shows that x extends to a character of G; hence the desired result.

hence:

c
Since x(y) * 1, this implies Z x(x) = 0.
xeG
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Corollary.—Let x € G. Then

2_.: ( ) (n gf x=1

xX\x) = .

x<C 0 if x+1

[ o) FESUEP ST SN 1 t . ot A
1N1S 101I0OWS Irom prop. 4 app o the dual group 4.

Remark.—The above results are special cases of the ‘‘orthogonality
relations” of the character theory of finite groups (not necessarily abelian).

1.3. Modular characters

Let m be an integer =1. We denote by G(m) the multiplicative group
(Z/mZ)* of invertible elements of the ring Z/mZ. It is an abelian group of
order ¢(m), where ¢(m) is the Euler ¢-function of m, cf. chap. I, n° 1.2. An
element x of the dual of G(m) is called a character modulo m; it can be
viewed as a function, defined on the set of integers prime to m, with values
in C*, and such that y(ab) = x(a)x(b); it is convenient to extend such a
function to all of Z by putting y(a) = 0 if a is not prime to m.

Examples
1) m = 4; the group G(4)

character, which is x — (=1)**®, cf. chap. I, n° 3.2.
2) m=38; the group G(8) has four elements. It has three nontrivial

(IJ

;-w Awa

two elements, hence has a unique nontrivial

X - (_ l)e(x), (_ l)w(x)’ (__ l)a(x)+w(.\-)

€ Alhnem T 40129
1. viiap. 1, 11 o.4.

3) m = p with p prime =+2. The group G(p) is cyclic of order p—1, hence

: X
has a unique character of order 2, the Legendre character x — ( —\ i

\ n/
\ £/

4) m = 7. The group G(7) is cyclic of order 6, thus has two characters of
order 3 which are complex conjugates. One of them is given by

xx) =1 ifx= +1(mod?7)
x(x) = e*3if x = +2(mod 7)
x(x) = e*"3if x = +3 (mod 7).

The characters of order 2 are closely related to the Legendre characters.

More prpmcplv

AVAN/ A W

Proposition S.—Let a be a non-zero square-free integer (cf. chap. IV, n° 3.2)
and let m = 4|a|. Then there exists a unique character x, modulo m such that

VAN
Xa(p) = (‘—‘) for all prime numbers p not dividing m. One has x> = 1 and
p

X ¥ lifa+1.
The uniqueness of y, is clear because all integers prime to m are products
of prime numbers not dividing m; the same argument shows that y2 = 1.
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To prove the existence of y,, assume first that @ = /, .../, where the /;
are distinct prime numbers, different from 2. Then we take for y, the character

X3 = (—tyeoma (%) (%)

\*1/ \'k/

If p is a prime number distinct from 2 and the /,, the quadratic reciprocity

law shows that B
; I lk \ a

) = \P} AV \p)

and x, has the required property. We have x, + 1 if @ # 1; indeed, if we
choose x such that

(;)E\)= —1 and x=1 (mod4l,...1),
\*1/
we have y,(x) = —1.

When a is of the form —b (or 2b or —2b) with b = [, ... [, as above,
we take for y, the product of y, with the character (—1)** (or (—1)“*
or (—1)™)+()) A similar argument shows that x, + 1.

Remark.—One can prove that, if x is an integer >0 prime to m, then

I|m (I,my=1
where (a, x), denotes the Hilbert symbol of @ and x in the field Q;. This
formula could have been used to define y,

§2. Dirichlet series

2.1. Lemma.

)

Lemma 1.—Let U be an open subset of C and let f, be a sequence of

holomorphic functions on U which converges uniformly on every compact set

to a function f. Then f is holomorphic in U and the derivatives f,’ of the f,
converge uniformly on all compact subsets to the derivative [’ of f.

Let us recall briefly the proof:
Let D be a closed disc contained in U and let C be its boundary oriented
in the usual manner. By Cauchy formula, one has

2i’7T 4 ZO
for all z, interior to D. Passing to the limit, one gets
1 z
fz0) = — tf( ) dz,
2dim ) z—2z,
&

which shows that f is holomorphic in the interior of D, and the first part of
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the lemma follows. The second part is proved in the same way, using the

formula: PPN
JZj
f'(z0) = J T2 de
2ir | (z— Zo)
¢

2. n apnriipanpe Diste

n=p n=m
A =Y a and S, = Y apb,
mp = 2 G ANd Omm L
Then one has: )
n=m’'—-1

Sm,m' = Z Am,n(bn—'bn+l)+Am,m'bm"

One replaces a, by A,, ,— A, »—1 and regroups the terms.
Lemma 3.—Let «, B be two real numbers with 0 < « < B. Let z = x+1iy
with x, y e R and x > 0. Then:

le~22 _ o~ h2| < IEI (e~ — g™ BX),
i© 0= 7N J
[

One writes

hence by taking absolute values
8
Ie az e—ﬂzl < Izl e dt |_Z|(e—-ax e—ﬂx)
X
J X
o

2.2. Dirichlet series

Let (A,) be an increasing sequence of real numbers tending to + oco. For
the sake of implicity, we suppose that the A, are >0 (this is not essential,

or we can always reduce ourselves to this case by suppressing a finite nt

g

of terms of the series under consideration).
A Dirichlet series with exponents (A,) is a series of the form

1 =~
2z

o -
La,,e on

(a,€C,zeC).

Examples

(a) A, = log n (ordinary Dirichlet series); such a series is written X a,/n?,

cf. n® 2.4,

(b) A, = n. By setting t =
R

®
N
-
=
w
o
=
o
w
o
&
o
]
3
&
[72]
]
o
@)
3
o
-
w
&
-
o
w
5
.y

emarl __The noti
AN TTIs I IV A AiWw LAV LA

Laplace transform of a measure u. This
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The case considered here is that where p is a discrete measure. (For more

detaile cee for inct ance Wimnep The ’nnlnno Trans form Princetaon Iniv
U\llr“llg, OWwWw AL v i A 1

ALRIVCAAANNAY RS, vy llJIJLI\, X s l./ P HIIJJ I'i,
Press, 1946.)

Proposition 6.—If the series f(@) = Za,e” *** converges for z = z,, it
converges uniformly in every domain of the form R(z—z,) = 0, Arg(z—z,) < «
with o < mf2.

(Here, and in ali that follows, R(z) denotes the real part of the compiex
number z.)

After making a translation on z, we can suppose that z, = 0 The
hypothesis then means that the series Xa, is convergent. We must prove that

T KT T TEEERE A RASMES S8TREESTEART BESEEE BRAEN RS IS TR Y MR EE T EIED¥SSEE

there is uniform convergence in every domam of the form R(z) = 0, |z|/R(z)

< k. Let ¢ > 0. Since the series Za, converges, there is an N such that if
m,m' = N, we have |4

...... we have |4, -] £e(notations being those of lemma 2). Applying
thls lemma with b, = e~*"?, we obtain
m' =1
,.,—Zn A~ An " Am
Sm,m' = Z Am,n(c z Hz)'{"Am,m c "'
m

By putting z = x+iy and applying lemma 3, we find:

S| S ( E7S e ))

S, me| S & (L+k(e™ " —e™4m))

‘Sm,m‘l é 8(1 +k)a

and the uniform convergence is clear.

Corollary 1.—If f converges for z = z,, it converges for R(z) > R(z,) and
the function thus defined is holomorphic.
This follows from prop. 6 and iemma 1.

Corollary 2.—The set of convergence of the series [ contains a maximal
open half plane (called the half plane of convergence).

(By abuse of language we consider @ and C as open half planes.)

If the half plane of convergence is given by R(z) > p, we say that p is
the abscissa of convergence of the series considered.

(The cases @ and C correspond respectively to p = + 00 and p = — o).

The half plane of convergence of the series Z|a,|e”*"* is called (for
obvious reasons) the half plane of absolute convergence of f; its abscissa of
convergence is denoted by p*. When A, = n (power series), it is well known

that p = p*. This is not true in general. For example the simplest L series:
L(z) = 1-1/3*4+1/5-1/7"+

corresponds to p = 0 and p* = 1, as we will see later.
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Corollary 3.—f(z) converges to f(z,) when z — z, in the domain

R(z—zy) = 0, |Arg (z—2z0)| £ « with a <7/2.

ket

Corollary 4.—The function f(z) can be identically zero only if all its
COéfﬁC ents a, are zero.

Let us show a, is zero. We multiply f by e*? and make z tend to + o0
(with z real for instance). The uniform convergence .shows that e*o*f tends

then to a, hence a, = 0. We proceed similarly for a,, etc.

2.3. Dirichlet series wit

(oI B 4 4

Proposition 7.—Let ' = Za,e”*** be a Dirichlet series whose coefficients
a, are real >0. Suppose that f converges for R(z) > p, with p R, and that

e =NV AIHRLIUDT srster J LUTEVCT SV Vi AN\~ [Pe Treeis o T ANy Wit il

the function f can be extended analytically to a function holomorphtc in a
neighborhood of the point z = p. Then there exists a number ¢ > 0 such that f

converges for R(z) > p—e.

(In other terms, the domain of convergence of fis bounded by a singularity
of f'located on the real axis.)

After replacing z by z—p, we can assume that p = 0. Since f is holo-
morphic for R(z) > 0 and in a neighborhood of 0, it is holomorphic in a
disc |z—1| £ 1+e, with € > 0. In particular, its Taylor series converges in
this disc. By lemma 1, the pth derivative of fis given by the formula

fP(z) = Z a,(—M)e"** for R(z) > 0;

hence

FO1) = (1Y, Ma,e™.

o0

f(z) = Zopl'(z—l)"f"”(l), Z2=1] £ 1+e.

In particular for z = —e, one has
v 1 )
f=9) = ¥, — +(=17FO),
p=0p:

the series being convergent.

I\pL(p)r1y — 25 o

But (—1)?f'7(1) = 4. A’a.e” " 1s a convergent series with positive terms.

Hence the double series with positive terms

1
f(=e) =Y a,— (1+&)fAfe™*
p,n p'
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converges. Rearranging terms, one gets

0

fl=) = Yae™ ¥ L 1tepx
n p= op
- Zane-;.,.ez,.(iw) — Zanez,z,
n n

This is the case A, = log n. The corresponding series is written

f(s) = Z a,/n’,

Proposition 8.—If the a, are bounded, there is absolute convergence for
R(s) > 1.

7

This follows from the well known convergence of Zl 1/n* for « > 1.

p
Proposition 9.—If the partial sums A, , = Z a, are bounded, there is

convergence (not necessarzly absolute) for R(s) > 0.
Assume that |A,,, p| < K. By applying Abel’s lemma (lemma 2), one
finds
N Lot b | 1 | 1N
ISmoml S K[ Y | | + i 'si

w |n* T (n+1y

We can suppose that s is real (by prop. 6). This allows us to write the preced-
ing inequality in the simpler form

lSm.m’l —S— K/ms-
and the convergence is clear.
§3. Zeta function and L functions

3.1. Eulerian products

Definition 2.—A function f: N — C is called multiplicative if f(1)= 1 and

whenever the integers n and m are relatively prime.
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Examples.—The Euler ¢-function (chap. I, n° 1.2) and the Ramanujan

funrtmn (rhnn VII, n° 4. ﬁ\ are mnlhn]l(‘ahve

~iilp/

Let f be a bounded multiplicative function.

Lemma 4.—The Dirichlet series 21 f(n)/n* converges absolutely for
ne
R(s) > 1 and its sum in this domain is equal to the convergent infinite product
[T+~ + ... +f(P™P ™+ .. ).
peP
(Here and in the following, P denotes the set of prime numbers.)
The absolute convergence of the series foliows from the fact that f is
bounded (prop. 8). Let S be a finite set of prime numbers and let N(S) be

the set of integers =1 all of whose prime factors belong to S.
The following equality is immediate:

0
A\ f /S — 17 N\ A nm\n—ms\
2, JUYin 11l 4 J\¥ ) ]
neN(S) PES \m=0 /

that the infinite product converges and that lts value is equal to Xf(n)/n".

N\ L1

Lemma 5.—/f ] is multiplicative in the strict sense (i.e. if f(nn") = f(n)f(n’)
for all pairs n, n’ e N), one has:

21
Lo = 11—

This follows fror

3
=
=
(¢’)
"
o8
S
<
()
o
3
3
n
=N}
=
(o8
-,
=t
[g']
o
o
=}
—
(=t
<
P
~3
3
N’
i
Y
o~
]
-

3.2. The zeta function

Apply the preceding section with f = 1. We obtain the function

r/..\_g‘_l_,rl l
n=1n’ peP]_l
P’

these formulas making sense for R(s) > 1.

Proposition 10.—(a) The zeta function is holomorphic and * 0 in the half

nlane R(s) >
Pt Y
(b) One has.

() = —— + $(s)

s_.
where ¢(s) is holomorphic for R(s) > 0.
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Assertion (a) is clear. For (b), we remark that

n+1
L —J“dt Z j t~5dt.
s—l
1
Hence we can write
n-[—l » nj—l
{s) = + i (1 (5dt) = % | (n™*—t"%)dt
S — n~*—t"%dt.
S’—‘l n=1kn J ) s—1 n=1 J
Put now

n

n+1

b= | (= and $(s) = Y, 4,09
J n=1

We have to show that ¢(s) is defined and holomorphic for R(s) > 0. But it is
clear that each ¢,(s) has those properties, thus it suffices to prove that the
series ¢, converges normally on all compact sets for R(s) > 0. One has

$a(s)] =

n sup  |n7%—17%| .
1
nstzn+1
But the derivative of the function n=5—1¢~
get:

t~% is equal to s/t**!. From this we

40 < 2L, withx = RE)
n

and the series ¢, converges normally for R(s) = ¢, for all e > 0

Q Q l" anr
11190 X0 wivQl.

Corollary 1.—The zeta function has a simple pole for s = 1
Thic 1

Corollary 2.—When s — 1, one has Z p~ S ~log 1/(s—1), and kE>2 1/p*
remains bounded. -
One has:

log {(s) =

PEPF,

IIV

;

= ) 1p*+is),

y PEP

with J(s) = EP k§2(1 [k.p*). The series ¢ is majorized by the series

SUP = YUP@ =1 < Ylp(p-1) £ 3 Un(n—1) = 1

n=2
This implies that ¢ is bounded, and since cor. 1 shows that log {(s) ~
1

. .1 N “)
s—1 . '

Remark.—Even though it is not necessary for our purpose, it should be
mentioned that {(s) can be extended to a meromorphic function on C with
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the single pole s = 1. The function f(s) = 7 ~52'(s/2){(s) is meromorphic
and satisfies the _/iii?CtiGiiut’ t:quuuuu g\.)} = g\l—o)

Moreover, the zeta function takes rational values on the negative
integers:

.
0 1
A4 A L

=
=

I

>0
{(1-2n) = (=1)"B,/2n ifn > 0,

-2
S iy

where B, denotes the nth Bernoulii number (cf. Chap. VII, n® 4.1).
One conjectures (Riemann hypothesis) that the other zeros of { are on

the line R(s) = 4. This has been verified numerically for a large number of
them (more than three million).

SRANERR R FAVAN REAAQRA1 RIS 22R2223RNRY)

3.3. The L-functions

Let m be an integer =1 and let ¥ be a character mod m (cf. n° 1.3). The
corresponding L function is defined by the Dirichlet series

o0
L(s,x) = 2, x(m)/r’.
n=1
Note that, in this sum, it is only the integers n which are pri
give a non-zero contribution.
The case of the unit character gives nothing essentially new:

-
(@]
3
:3
=
C
b

Proposition 11.—For x = 1, one has

L(s, 1) = F(s){(s) with F(s) = ]l—[ (1-p~¢

In particular L(s, 1) extends analytically for R(s) > 0 and has a simple pole
ats = 1.
This is clear.
r x ¥ 1 the series L(s, x) converges (resp. converges
alf plane R(s) > 0 (resp. R(s) > 1); one has

oy -~

1

L) = [T——  forRGs) > 1.
pEPI _ X(p)
S
P
The assertions relative to R(s) > 1 follow from what has been said i
no 3 1 It remains to Sl—\our the convereence o nf t cariae for R(o) ~ 0O Tclnn
. . JO vy i1 ll'\/ls\vll\/\- AV D § ‘r‘l OWwiiwo AV ‘\\UI ~ Ve \Jolll&

prop. 9, it suffices to see that the sums

A

are bounded. Now, by prop. 4, we have

u+m-—1

Z x(n) = 0.

u
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Hence it suffices to majorize the sums A4, , for v—u < m, and this is obvious:
NnNp h

Vil llu

44,0 = $(m).
The proposition follows.

Remark.—In particular L(l, x) is finite when y + 1. The essential point
of Dirichlet’s proof consists in showing that L(1, x) is different from zero.
This is the object of the next section.

3.4. Product of the L functions relative to the same integer m

In this section, m is a fixed integer = 1. If p does not divide m, we denote
by p its image in G(m) = (Z/mZ)* and by f(p) the order of j in the group
G(m). By definition, f(p) is the smallest integer f > 1 such that nf =1

e ilaaisallia, 23 A% SRR RILOY LA pve S22

(mod m). We put

g(p) = ¢(m)[f(p);
This is the order of the quotient of G(m) by the subgroup (p) generated by p.

Lemma 6.—If ptm, one has the identity
[T(-x(®)T) = =Ty,

where the product extends over all characters x of G(m).
Let W be the set of f(p)-th roots of unity. One has the identity

[T A=wT)=1-T/®,

weW

Lemma 6 follows from this and the fact that for all w € W there exists g(p)
characters y of G(m) such that y(p) =

We now define a new function {,(s) by means of the formula

L (s) = ﬂL(

Sm\- s /\

l

the product being extended over all characters y of G(m).
Proposition 13.—One has

g®=ﬂ/

ptm

1

\ 1 \g(p)'
\‘ T s )

This is a Dirichlet series, with positive integral coefficients, converging in the
half plane R(s) > 1

Replacing each L function by its product expansion, and applying
lemma 6 (with T = p~*), we obtain the product expansion of {,(s). This
expansion shows clearly that it is a series with positive coefficients; its con-
vergence for R(s) > 1 is clear.
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Theorem 1.—(a) {,, has a simple pole at s = 1.
(b) L{1, x) # 0 for all x + 1.

If L(1, x) = 0 for all ¥ & 1, the fact that L(s, 1) has a simple pole at
s = 1 shows that the same is true for {,. Thus (b) = (a). Suppose now that
L(i, ) = 0 for some y + 1. Then the function ¢, would be holomorphic

1 thus also for all s such that R(s) > O (cf. prop. 11 and 12). Since

a Dirichlet series with positive coefficients, this series would converge
11 s in the same domain (prop. 7). But this is absurd. Indeed, the pth-factor

s
all s in the same domain But this is ab
of £, 1

is equal to

tl
or

— (1 +p-f(p)s+p_2f(p)s+_ . _)g(p),

and dominates the series
pn—d(m)s +p —2¢(m)s +.

1 L
1Ty

It follows that {,, has all its coefficients greater than those of the series

A _—¢d(m)s
Y e
(n,m)y=1
. . 1 :
which diverges for s = PR This concludes the proof.
m
A

Remark.—The function ,, is equal (up to a finite number of factors)
to the zeta function associated with the field of mth roots of unity. The fact
that {,, has a simple pole at s = 1 can also be deduced from general results on
zeta functions of algebraic number fields.

§4. Density and Dirichlet theorem

Let P be the set of prime numbers. We have seen (cor. 2 to prop. 10)
that, when s tends to 1 (s being real >1 to fix the ideas) one has
1 1
Z —~ log _
S
peP D s—1

Let 4 be a subset of P. One says that 4 has for density a real number k
when the ratio
(v 1\ [/,

1)
\& )/\8520)

tends to k when s — 1. (Of course, one then has 0 < k £1.) The theorem
on arithmetic progressions can be refined in the following way:

Theorem 2.—Let m = 1 and let a be such that (a, m) = 1. Let P, be the

set of prime numbers such that p = a (mod m). The set P, has density 1]d(m).

(In other words the prime numbers are ‘“equally distributed” between the
different classes modulo m which are prime to m.)



74 The theorem on arithmetic progressions

4.2. Lemmas

Let x be a character of G(m). Put
f(s) = ; x(p)Ip’,

this series being convergent for s > 1.

Lemma 7.—If x = 1, then f, ~ log for s — 1.

S_

b 4 1 h | r Tt /_ © 2

inaeedq, s, differs from the series «l/p” by a finite number of terms Ol’lly.

Lemma 8.—If x + 1, f, remains bounded when s — 1.

W tha 1 ith
We use the logarithm of the function L(s, x). It is necessary to ma

little more precise what we mean by this (due to the fact that “log’ is not
properly speaking a function)

L{s, x) is defined by the product [ [1/(1 —x(p)p®). For R(s) > 1 each factor
. . 1 (13 : : "
is of the form 1/(1 —«) with |«| < 1. We define log1 s X o«"/n (“principal

— n—=

determination of the logarithm) and we define log L(s, x) by the series (clearly
convergent):

(Equivalent definition: take the “branch” of log L(s, x) in R(s) > 1 which
becomes 0 when s — + oo on the real axis.)
We now Qh]l lmr I(v v\ into two parts:

L(s, x) = f(8)+ Fy(s)
with
Fy(s) = p;z:)zx(p)i‘/np'"'s-
Theorem 1, together with cor. 2 of prop. 10, shows that log L(s, x) and
F,(s) remain bounded when s — 1. Hence the same holds for f,(s), which
proves the lemma.

A . sl nnsnzan )
S.0. £100) 0] tneorcent o

We have to study the behavior of the function
gs) = 2 1/p°
PEP,
for s - 1.
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Lemma 9.—One has

The tunctlon Zx(a)~ jx(s) can be wrltten, by replacing /f, by its definition:

Y (Zx@ W)

pfm \ x

But y(a~ Hx(p) = x(a”'p). By the corollary to prop. 4, we have:
> x@ 'p) = ¢(m) ifa”'p =1 (mod m)
X
=0 otherwise.

Hence we find the function ¢(m)g,(s).

Theorem 2 is now clear. Indeed, lemma 7 shows that f,(s) ~ log
b

for y = 1, and lemma 8 shows that all other f, remai

v
A

lemma 9, we then see that g (s) ~ 1 log , and this means that the
1 $(m) s—1

(m)
4.4. An application

density of P, is

Proposition 14.—Let a be an integer which is not a square. The set of

- (%) _
prime numbers p such that

ch that 2 ) = 1 ha

We can assume that a is square-free. Let m = 4|a], let x, be the character
(mod m) defined in prop. 5 of n° 1.3 and let H < G(m) be the kernel of y,
in G(m). If p is a prime number not divisible by m, let p be its image in G(m).
We have ( 9) = 1 if and only if p is contained in H. By th. 2 the set of prime

\?P/
numbers verifying this condition has for density the inverse of the index of H
in G(m), that is to say 3.

. I d,. ........ v2 . _— N
ary. —Let a be an int . if tne quauun A —d =vU

modulo p for almost all p eP it h as a solution in Z.

Remark.—There are analogous results for other types of equations. For
instance:
1) let f(x) = apX"+...+a, be a polynomial of degree n with integer co-
efficients, which is irreducible over Q. Let K be the field generated by the
roots of f (in an algebraically ciosed extension of Q) and let N = [K: Q].
One has N = n. Let Pf be the set of prime numbers p such that f ““decomposes
completely modulo p”’; i.e. such that all the roots of f(mod p) belong to F

LAY 5 S22 LA2QL Q22 AN ARV S UL ) ARV Ly UNaAVU22

One can prove that P, has density % . (The method is analogous to that of
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the Dirichlet theorem—one uses the fact that the zeta function of the field

K has a simple pole at s = 1.) One can also give the density of the set P of
p such that the reduction of f (mod p) has at least one root in F,; it is a
number of the form ¢/N with 1 £ g < N (setting aside the trivial case

whera » — 1)
YYilviN T8 — l}-

ii) More generally, let {f,(x,,..., x,)} be a family of polynomials with
integer coefficients and let Q be the set of p € P such that the reductions of
fa (mod p) have a COI“muOi‘ ZETO in \rp} It can be pi‘O'v'i‘:u \see J. r\A Ann. u_/
Maths., 85, 1967, pp. 161-183) that Q has a density; moreover this density
is a rational number and is zero only if Q is finite.

4.5. Natural density

The density used in this paragraph is the “analytic density’’ (or “‘Dirichlet
density”). Desplte its apparent complexity, it is very convenient.

There is another notion, that of “natural density”: a subset A4 of P has
natural density k if the ratio

tends to k when n — co.
One can prove that, if 4 has natural density k, the analytic density of 4

exists and is equal to k. On the other uauu, there exist sets ua'ving an ai‘lalytu
density but no natural density. It is the case, for example, of the set P! of
prime numbers whose first digit (in the decimal system, say) is equal to 1.
One sees easily, using the prime number theorem, that P! does not have a
natural density and on the other hand BoMBIERI has shown me a proof that
the analytic density of P! exists (it is equal to log,,2 = 0.301029995...).

However, this natholngv does not occur for the sets of nrlme numbers

considered above: the set of p € P such that p = a (mod m) has a natural
density (equal to 1/é(m), if a is prime to m); the same holds for the sets

denoted P. P! and f) in the nreceding section. For a nroof (and an estimate
llllllll & f - j, A AANS A1 ViAW ylvvvulll& IWwWwLIJile A y‘ AVA VDY \“.‘u “Aii Vu‘r‘l““‘v

of the “error term’ ) see K. PRACHAR, Primzahlverteilung, V, §7.



1. Definitions

Let H denote the upper half plane of C, i.e. the set of complex numbers
z whose imaginary part Im(z) is >0.

. {fa b\ .. ) o _

Let SL,(R) be the group of matrices kz d , with real coethcients, such
that ad—bc = 1. We make SL,(R) act on C = Cu{oo} in the following
way:

ifg = (‘CZ Z) is an element of SL,(R), and if z C, we put

az+b
cz+d
One checks easily the formula
Im(z)
1 Im(gz) = ——— .
1) (2) ezt d]?

This shows that H is stable under the action of SL,(R). Note that the element
-1 0 .. .

-1 = ( 0 1) of SL,(R) acts trivially on H. We can then consider that

it 18 the group PQI.-(R\ = QT.-(R\/!-LIE which operates (and this group

...v o of QIS (K2 228

acts fazthfully——one can even show that it is the group of all analytic auto-

morphisms of H).
Teat QY. (7)) he the

(‘Il ﬂ?‘ 1 oNnnoig
Adw L U.IJZ\LJ} Uw Uil UU A uy Vi uuz\l\] w1010

coefficients in Z. It is a discrete subgroup of SL,(R).

Definition 1.—The group G = SL,(Z)/{+ 1} is called the modular group;
it is the image of SL,(Z) in PSL,(R).

Ifg = ( f 3) is an element of SL,(Z), we often use the same symbol to
\T T
denote its image in the modular group G.

T -

11 nISEN SENUURSUAN B DISUNIE ISR 10y RS
1.L. rundameniar aomain 0j ine moauiar group

Let S and T be the elements of G defined respectively by ((1) B (1)) and

-\

\0 l) One has:

77
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Sz = —1/z, Tz = z+1

o2 ™ 3
D

= 1 (eT3 _ 1
= 1, Wwi)" =1

On the other hand, let D be the subset of H formed of all points z such
that |z| = 1 and |Re(z)| < 1/2. The figure below represents the transforms
of D by the elements:

{1, T, TS, ST"'S, S, ST, STS, T 'S, T~ '} of the group G.

Fig. 1

<= ) IS

We will show that D is a fundamental domain for the action of G on the

half plane H. More precisely:

Theorem 1.—(1) For every z € H, there exists g € G such that gz € D.

(2) Suppose that two distinct points z, z' of D are congruent modulo G.
Then, R(z) = +Yandz=2z"+1,0r |z| =1 and 2’ = —1/z.

(3) Let ze D and let 1(z) = {g|lg € G, gz = z} the stabilizer of z in G.
One has 1(z) = {1} except in the following three cases:

z = i, in which case 1(z) is the group of order 2 generated by S,
=p= 021:1/3

xn |A}hll‘l1 Cﬂ(‘D ,(‘7\ ic f}lﬂ 0"/)11") nfnr/]or q opnornfoff l')l) QT

BOC A \& ) s sl upy vy viucor o LTI U )y A

, in which case I (2) is the group of order 3 generated by TS.

m/3

NN
Il

Assertions (1) and (2) imply:

Corollary.—The canonical map D — H|G is surjective and its restriction
to the interior of D is injective.

e(‘)TEm A.—l ne group U is generazea Dy S and T
Proof of theorems 1 and 2.—Let G’ be the subgroup of G generated by
S and T, and let z € H. We are going to show that there exists g’ € G’ such

that g’z € D, and this will prove assertion (1) of theorem 1. If g = (‘; Z)

is an element of G’, then

(1) Im(gz) = M)

]cz+d|i'
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at thhnaan Xi oto ~L
at LIICIC CA ng':U Sucn

less than a given number is finite. This shows th
that Im(gz) is maximum. Choose now an mteger n such that T"gz has real
part between —% and +4. The element z' = T"gz belongs to D; indeed, it

~,

suffices to see that [z'| = 1, but if |z’| < 1, the element —1/z" would have

Since ¢ and d are integers, the numbers of pairs (¢, d) su t at ]cz+d| is
1. a
i1 C

an imaginary part strictly larger than Im(z’) which is impossible. Thus the

We now prove assertions (2) and (3) of theorem 1. Let z e D and let

we mav sunnose that Im(oz) > Im(2). 1.e. that lez4+dl is <1. This is clearly
€ may suppose that Im(gz) =2 im(z), 1.c. that jcz+d; 1s = 1. 1his 1S clearly
impossible if |c| g 2, leaving then the cases ¢ = 0, 1, —1. If ¢ = 0, we have
d = +1 and g is the translation by +b. Since R(z) and R(gz) are both
hat \nnnﬂ ;L nr\ 1 thic smnlicc atthar A — N and o0 — 1 Ar h — L1 in whir
s L YYLLll 2 all —Z L1110 llllyllbb VILIING U~ U ali\l 5 - 1 UL U -~ A1 11} Wlll\/ll

A
case one of the numbers R(z) and R(gz) must be equal to — % and the other
the

to {; Ifc=1, fact that |z+d| is =1 implies d 0 exceptifz =p (resp.
—p) in which case we can have d = 0, 1 (resp, d = 0, —1). The case d = 0
gives |z| < 1 hence |z] = 1; on the other hand, ad—bc = 1 implies b = —1,
hence gz = a—1/z and the first part of the discussion proves that a = 0

except if R(z) = +14,i.e.if z = por —p in which case we havea = 0, —1 or
a=0,1.Thecase z=p,d=1givesa—b=1and gp = a—1/(1+p) = a+p,
hence a = 0, 1; we argue similarly when z = —5, d = —1. Finally the case
¢ = —1 leads to the case ¢ = 1 by changing the ns of a, b, ¢, d (which

does not change g, viewed as an element of G) ThlS completes the verific-
ation of assertions (2) and (3).

!
It remains to prove that G’ = G. L

t o a
v 6 «
point z, interior to D (for example zo = 2i), and
above that there exists g’ € G’ such that g’z €

’ £ N Adnla 7 A nwa ~F
g gz, O1 D are congruent moauio {, ana one oi

By (2) and (3), it follows that these points coincide a d hat g’g = 1. Hence
we have g € G', which completes the proof.

z = gzo. We have seen

teat A A

oy 3

Remark.—One can show that (S, T; S§2, (§T)>)> is a presentation of G,
or, equivalently, that G is the free product of the cyclic group of order 2
generated by S and the cyclic group of order 3 generated by ST.

§2. Modular functions
2.1. Definitions

Definition 2.—Let k be an integer. We say a function f is weakly modular
of weight 2k'V) if f is meromorphic on the half plane H and verifies the relation
_ -2k az+b) ( ab
(2) f(2) = (cz+4d) f(,.- — forall |~ ")) €e SLy(Z)
\(,L_T—u/ \C u/

M Some authors say that fis “‘of weight —2k”, others that fis “‘of weight k.
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Let g be the image in G of (a [_), . We have d(gz)/dz = (cz+d)~ 2. The

C (l/
relation (2) can then be written:

flgz) / d(g zz)\ ,

f(@) \ dz /
or
2\ £ o NI Nk — £\ Ik
) J\gz)agz)” = j(zjaz

It means that the “differential form of weight k&’ f(z)dz* is invariant under G.
Since G is generated by the elements S and T (see th. 2), it suffices to check
the invariance by S and by 7. This gives:

Proposition 1.—Let f be meromorphic on H. The function [ is a weakly
modular function of weight 2k if and only if it satisfies the two relations:

(4) fz+1) = f(2)

kee

5 1(2).

(5 1/7) — »2
\-) J /‘-)—"

Suppose the relation (4) is verified. We can then express f as a function
of q = ‘2 y function which we will denote Uy _[, it is me‘r‘Oﬁ‘lO‘r‘me in the
disk |q| < 1 with the origin removed. If f extends to a meromorphic (resp.
holomorphic) function at the origin, we say, by abuse of language, that f
is meromorphic (resp. holomorphic) at infinity. This means that f admits a

Laurent expansion in a neighborhood of the origin

Definition 3.—A weakly modul
morphic at infinity.

When f is holomorphic at infinity, we set f(o0) = f(0). This is the value
of f at infinity.

Definition 4.—A modular function which is holomorphic everywhere
(including infinity) is called a modular form; if such a function is zero at
infinity, it is called a cusp form (“‘Spitzenform” in German—‘‘forme para-
bolique” in French).

A modular form of weight 2k is thus given by a series
o0 e 0] .
(6) f@) =3 agq"= ) a,e*™™
n=0 n=0

which converges for |g| <1 (i.e. for Im(z) > 0), and which verifies the
identity

&) f(=1/2) = 27/ (2).

It 1s a cusp form if g, = 0.
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Examples

1) If fand /' are modular forms of weight 2k and 2k’, the product ff' is a
modular form of weight 2k +2k’.

2) We will see later that the function

[e 0}
g [] (1—¢"** = q—24q*+252¢°—1472¢* +. ..
n=1
1 O MIICMm nr t\r w710y " lq
19 \/uol} 1vV1i111 U1 VV\.«lslll J 478

2.2. Lattice functions and modular functions

We recall first what is a /attice in a real vector space V of finite dimension.
It is a subgroup I' of V verifying one of the following equivalent conditions:

i) I' is discrete and V/I' is compact;
1)) I' is discrete and generates the R-vector space V;
iii) There exists an R-basis (e, ..., e,) of V which is a Z-basis of I' (i.e.
= Zel ("B @ Zen)
Let Z be the set of lattices of C considered as an R-vector space. Let M
be the set of pairs (w;, w,) of elements of C* such that Im(w,/w,) > 0; to

223 EELAAN o | Ve

such a pair we associate the lattice
P(U)l, wz) - Zwl C‘B sz

with basis {w,, w, }. We thus obtain a map M — Z which is clearly surjective.

Let g = (z 2) € SL,(Z) and let (w,, w,) € M. We put

(Ul’ = awl+bw2 and wé = cwl+dw2.
It is clear that {w;, w;} is a basis of I'(w,, w,). Moreover, if we set z = w,/w,
and z’ = w;/w;, we have
, az+b
z
cz+d

This shows that Im(z’) > 0, hence that (w;, w,) belongs to M.

necessary an suﬁﬁczent that they are congruent modulo SL,(Z).
sts

w that the condition is sufficient. Conversely, if (w;, w,) and
tg nf M \lll’\lf‘]’\ define the ¢ e

P:opnsition 2.—For two elements of M to dpﬁnp the same lattice it is

ame lattice there
AV A4 NAWwillililw bll\d JCilliw Iubll\i\/, LiiWwi W

. . ab : :
an integer matrix g = d) of determinant + 1 which transforms the first

L&) ~N +ha AE Teaad 7 I\ wxrae 14 s
CUE ) was \U LllC blgll Ul 1rll\w1/w2} wouilu vc

the opposite of Im(w,/w,) as one sees by an immediate computation. The
two signs being the same, we have necessarily det(g) = 1 which proves the
proposition.

Hence we can identify the set £ of lattices of C with the quotient of M
by the action of SL,(Z).

10 1nt~ ¢ A
04dsis Into inc dCLUiIU.
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Make now C* act on £ (resp. on M) by:

[ AT (resp. (g, @g) = (Aoy, Awy)), A e C*
The quotient M/C* is identified with H by (w,, w,) >z = w,;/w,, and
this identification transforms the action of SL,(Z) on M into that of

G = SL,(Z)/{£1} on H (cf. n° 1.1). Hence:

Proposition 3.—The map (w 15 wz) > w,/w, gives by passing to the quotient,
bz L TDIAK .4 nn alamanmt AF IV Ane lan 21, a0, 1
a UlJC(.llUH (%)) e/L/\., Oonio II/U \IIIUQ, all CICILICIIL L IIjJ CLail UC 1Uciiuuiicy

with a lattice of C defined up to a homothety.)

Remark.—Let us associate to a lattice I' of C the elliptic curve Er = C/T.
It is easy to see that two lattices I' and I'" define isomorphic elliptic curves
if and only if they are homothetic. This gives a third description of H/G =
Z[C*: it is the set of isomorphism classes of elliptic curves.

Let us pass now to modular functions. Let F be a function on £, with
]m( values, and let k € Z. We say that F is of weight 2k if

Sy Gile 2NN vials v

7 FOT') = A~ 2¢F(T)

¢ M and all )c(‘*

o
v AL dAdliu Qil v -

Let F be such a function. If (w;, w,) € M, we denote by F(w,, w,) the
value of F on the lattice I'(w,, w,). The formula (7) translates to:

[

....
Pm—
-—1
q-+
ot
C 3

7O\ s \ N _ Y—2krys \
9) Linwg, Aw,) = A r\wg, wyj.

Moreover, F(w;, w,) 1s invariant by the action of SL,(Z) on M.
Formula (8) shows that the product w3*F(w,, w,) depends only on
Z = w,/w,. There exists then a function f on H such that

9) Fw,, wy) = wz—Zkf(‘”l/wz)-
Writing that F is invariant by SL,(Z), we see that f satisfies the identity:

(2) f(z) = (cz+d)~ Zkf/ az +b\ for all / a b\ _qr (7.
\<J J\*¥J \v Pow ‘ ,J’ rTRLIN=)
\Lé'f‘u/ u/

Conversely, if f verifies (2), formula (9) associates to it a function F on %
which is of weight 2k. We can thus identify modular functions of weight 2k
with some lattice functions of weight 2k.

2.3. Examples of modular functions; Eisenstein series

Lemma 1.—Let I’ be a lattice in C. The series Z’ 1/]y|° is convergent for
o> 2. ve

(The sy mbol X’ sionifies that the summation runs over the nonzero

\ & 2w Anvvn i Vipmiiiiiws vialev  uiiwv WeEARAAL ix il v i 3

elements of ')

We can proceed as with the series X1/n% i.e. majorize the series under
Cr dxdv

consideration by a multiple of the double integral ——%—5 extended

(e* +y?)”
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over the plane deprived of a disk with center 0. The double integral is easily
computed using ‘“‘polar coordinates”. Another method, essentially equivalent,
consists in remarking that the number of elements of I' such that |y| is
between two consecutive integers n and n+ 1 is O(n); the convergence of the
series is thus reduced to that of the series 1/n° 1.

Now let k be an integer > 1. If I is a lattice of C, put

1. .2k

710\ ol 1/.,
v) Uil 1y

is a
v/
T4
vell
This series converges absolutely, thanks to lemma 1. It is clear that G, is
of weight 2k. 1t is called the Eisenstein series of index k (or index 2k following
other authors). As in the preceding section, we can view G, as a function on
M, given by:

(11) Gk(wl’ ‘Uz) = Z,

ain the svmbol X’ means that the summation runs over all nairs of
w UJ SIS A — L2 “we CAAW (v ) SA VAN AL A NVBLAW NJ YV Wwa CAALR (S 2% Qv A

integers (m, n) distinct from (0, 0). The function on H corresponding to G,

(by the procedure given in the preceding section) is again denoted by G,.
D‘Y “l\"m]"ﬁﬂ {0\ ﬂﬂf‘ (1 I\ TEIO I-\niya
iviiluian \7} aliu \l 1}, YW\ l1iave
1
(12) G2 =) ——.

Proposition 4.—Let k be an integer >1. The Eisenstein series G,(z) is a
modular form of weight 2k. We have G,(o0) = 2{(2k) where { denotes the
Riemann zeta function.

The above arguments show that G,(z) is weakly modular of weight 2k.
We have to show that G, is everywhere holomorphic (including infinity).
First suppose that z is contained in the fundamental domain D (cf. n° 1.2).

|Imz+n|* = m?zz +2mnR(z) +n*
> m*—mn+n* = |mp—n|>.

By lemma 1, the series X'1/|mp—n|** is convergent. This shows that the

series G,(z) converges normally in D, thus also (applying the result to G, (g~ '2)
with g € G) in each of the transforms gD of D by G. Since these cover H

(th. 1), we see that G, is holomorphic in H. It remains to see that G, is
holomorphic at infinity (and to find the value at this point). This amounts

tno nrovino that F hac a hmlf Fnr ’m(';\ — o0. But one may sunnose fhaf ”
L\ yl A" J lllb CALAGA N AAALALAL i s ML Viiw ‘.‘uJ yy [S ) %) L1l L o

remains in the fundamental domain D in view of the uniform convergence

in D, we can make the passage to the limit term by term. The terms

,.\Zk ...-.I.u ra t e L A ~thare giua 1/ 2k Thiio
} tive 1O i =+ 11IC ULIICLD slvc 1/ . 1 IIUD

o
>

1/f 32~ .1
yyf{mz—+v¥
lim.G(z) = Y."1/n** = 2 1/n** = 2{(2k) q.e.d.

Remark.—We give in n° 4.2 below the expansion of G, as a power series
in g = e2m’z
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Examples.—The Eisenstein series of lowest weights are G, and Gj,
vihinla ~f A nd & Tt {
wniCii aic Oi wcnsut & anda o. ll. ID bUllVClllCl L

elliptic curves) to replace these by multiples:
(13) gz = 60(.;2, g3 = 140(.;3-

We have g,(o0) = 120{(4) and g;(o0) = 280¢(6). Using the known values
of {(4) and {(6) (see for example n° 4.1 below), one finds:

4 8
(14) g,(©) = 5774, g3(0) = Y 7°.
If we put
(15) A = g3—27g3,

we have A(o0) = 0; that is to say, A is a cusp form of weight 12.

Relation with elliptic curves

A 14
Let I" be a lattice of C and let

(16) pr) = 5+ - )

be the corresponding Weierstrass function'?. The G,(T') occur into the
Laurent expansion of :

oo
(17) Prw) == + 3, Qk=DGDu*2,

If we put x = @), y = pr(u), we have

(18) ¥ =4x’—gx—gs,

with g, = 60G,(I"), g5 = 140G,(I") as above. Up to a numerical factor,

A = g3—27g3 is equal to the discriminant of the polynomial 4x3 —g,x—gj.
One proves that the cubic defined by the equation (18) in the projective
plane is isomorphic to the eiliptic curve C/T'. In particular, it is a nonsingular

curve, and this shows that A is 0.

§3. The space of modular forms
3.1. The zeros and poles of a modular function

orn an
LIl Uy

.
——
A
<
N

Tet £f he a meromoarnhic finction an H not 1
AdWw b J Uw All\alvlllvll.llll.v 1iw iV

d
be a point of H. The integer n such that f/(z—p)" is holomorphlc and non-
zero at p is called the order of f at p and is denoted by v,(f).

(1) See for example H. CARTAN, Théorie élémentaire des fonctions analytiques d’une ou
plusieurs variables complexes, chap. V, §2, n° 5. (English translation: Addison-Wesley Co.)
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When f is a modular function of weight 2k, the identity

/

1) = (cz+d) " f (”"’)

A1) if o € G. In other term (f")dc

= Uep\J ) 1 other te UplJ

in H/G Moreover one can defme v(f) as he order or
q = O o th function f(g) associated to f (cf. n° 2.1).

will denote hv e thae arder nf tha ctahi

J n

AARYS SRS AV AR UJ p Lilv Viuwvl UVl Liliv vl v v

we have e, = 2 (resp. e, = 3) if p is congruent modulo G to i (resp. to
and e, = 1 otherwise, cf. th. 1.

\

¢

"

»”

(
'U f"\.

S~

P

i-ﬁ,

Theorem 3.—Let f be a modular function of weight 2k, not identically
zero. One has:

1 k
(19) v (A+ N —o(H ==
w\J J yo p\J J
peH|G ep 6
[We can also write this formula in the form
1 1 L
(70 w (FY LYy YA % 4 (£ b
\<V) VolJ )} T Ui\J ) Uo\J ) T Up\J J] —
2 3 PEH|G 6

where the symbol X* means a summation over the points of H/G distinct
from the classes of i and p.]

LKaiise

Observe first that the sum written in th. 3 makes sense, i.e. that f has
only a finite number of zeros and poles modulo G. Indeed, since f is mero-

mnrr\huﬁ thara avicte »r ~ N ench that £ hae nna 7ara naor nale far N =~ lal ~ #-
VI PIlIvy UIVIV VAISWY 7~ UV SUVldl Uldl j 1ad 1V LUV UVL pPUIVIVI VvV S || S~ 7,

1
this means that fhas no zero nor pole for Im(z) > o log (1/r). Now, the part
i

1
D, of the fundamental domain D defined by the inequality /m(z) = 2—log
w

(1/r) is compact; since f is meromorphic in H, it has only a finite number of
zeros and of poles in D,, hence our assertion.

daf

- 1
To prove theorem 3, we will integrate — = on the boundary of D. More
precisely: i

1) Supposethat fhas no zero nor pole on the boundary of Dexcept possibly
, P, and —p. There exists a contour € as represented in Fig. 2 whose interior

representative of each zero or nole of f not coneruent to i or p

i wOowiaivisva wllwii &awiv UiV VUi LUl VUGSl Uil l.v 4 e

tains a
By the residue theorem we have

L[4 s+ 0p)
ZmJ f peHIG

Al MThco Alpcne ~f cnlallon o 2RIZ 4 m A.._.‘- il mn T'A Dt o ASenla
aj 111C Cllallgt 01 vallavlcs ¢ = ¢€ LI dIidl IS L11C 4dIC £L.A 1INV 4 ClICIC W
centered at ¢ = 0, with negative orientation, and not enclosing any zero or

pole of f except possibly

_o
T 2
(¢}
=
(@]
(¢
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Fig. 2

1 Af
b) The integral of E‘—— < on the circle which contains the arc BB’, oriented
i

negatively, has the value —u,(f). When the radius of this circle tends to 0,

N 2
the angle B,B’ tends to e Hence:

B’ f 1
j—f T o(f)-
B

Similarly when the radii of the arcs CC’' and DD’ tend to O:

§ I
(S

c’
_1__ In_“’f“_> J— 1 v.(’f')
2117Jf 2
C
Ddf
1 1
EJ\7_> gv(f)
D

¢) T transforms the arc AB into the arc ED’; since f(Tz) = f(z), we get:

df 1 Edf _
2111 —71 7

A

0.

d) S transforms the arc B’C onto the arc DC’; since f(Sz) = z2*f(z), we
get:

) _ oyl , &),
£(s2) EN
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1 (df 1 "Ddf' B df(z)  df(Sz)
%J7+EJ7 2mJ<f(z) f(SZ))

hence:

B c
C
1 dz
= %in f(‘z";)
B""' \ /
1 k
Q—Zk(—ﬁ =8

1
Writing now that the two expressions we get for — f —f are equal, and

2 | f
€
passing to the limit, we find formula (20).
2) Suppose that f has a z or a pole A on the half line
J3
lee(z) - =, Im(z) > 50

We repeat the above proof with a contour modified in a neighborhood of A
and of TA as in Fig. 3. (The arc circling around 7A is the transform by T of

the arc cnrclmo around A)

>
m

A

> o

4

™
<
(@)
o

(\ﬁ“\

.70

__/

—

|

——d

|

N p————
N frme e -
—

0
Fig.3
We proceed in an analogous way if f has several zeros or poles on the
hanndary AFf D
uuuuucu_y Vi L/

Remark.—This somewhat laborious proof could have been avoided if
one had defined a complex analytic structure on the compactification of H/G
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3.2. The algebra of modular forms

If £ is an mteoer we denote hv MK (resp M‘,’() the C-vector sp agc of

modular forms of welght 2k (resp. of cusp forms of weight 2k) cf. n° 2.1,
def. 4. By definition, M9 is the kernel of the linear form f+ f(c0) on M,.

Thiie we have dim M /ll/IO < 1. Moreover. for k > ') the Fisenstein series

L1140 YYw 11 vYw \ui11lill 1 ‘kl iva 4. 1IVAVIWUTYGLVLe 1V TV A1 Owiilwo

G, 1s an element of M, such that G,(o0) % O, cf. n° 2.3, prop. 4. Hence we
have

Finally recall that one denotes by A the element g3—27g3 of M where
gz = 60G2 and g3 = 140(;3.

Theorem 4.—(i) We have M, = 0 for k < 0 and k = 1.

(i) Fork =0, 2, 3, 4, 5, M, is a vector space of dimension 1 with basis 1,
G,, Gs, G4, Gs; we have MY = 0.

(iii) Multiplication by A defines an isomorphism of M, _ ¢ onto M3.

Let f be a nonzero element of M,. All the terms on the left side of the
formula

(20) vo(f) + ;vi(f) + %v,,(f) Yo () =k
PEH|G 6

are >0. Thus we have k = 0 and also k =+ 1, since £ cannot be written in
the form n+n'/2+n"/3 with n, n’, n” = 0. This proves (i).

Now apply (20) to f = G,, k = 2. We can write £ in the form n+n'/2
+n"/3,n,n’, n" 2 0 only forn =0, n" =0, n" = 1. This shows that v,(G,)
= 1 and v,(G;) = 0 for p # p (modulo G). The same argument applies to
G, and proves that v,(G;) = 1 and that all the others v,(G,) are zero. This
aiready shows that A is not zero at i, hence is not identicaily zero. Since the
weight of A is 12 and v,(A) = 1, formula (20) implies that v,(A) = 0 for
p + o and v_(A) = 1. In other words, A does not vanish on H and has a
simple zero at infinity. If f is an element of MY and if we set g = f/A, it is
clear that g is of weight 2k —12. Moreover, the formula

wl8) =t M= i (-1 ifp = oo
shows that v,(g) is 20 for all p, thus that g belongs to M, _ ¢, which proves (iii).

Finally, if kK < 5, we have k—6 <0 and M{ = 0 by (i) and (iii); this
shows that dim M, < 1. Since 1, G,, G5, G4, G5 are nonzero elements of
My, M,, M, M,, M5, we have dim M, =1 for k = 0, 2, 3, 4, 5, which
proves (ii).

Corollary 1.—We have
([k/6]
21 dimM, ="
02y K i[ 141

=
&
v v
o
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(Recall that [x] denotes the integral part of x, i.e. the largest integer n such
that n < x.)

Formula (21) is true for 0 < k < 6 by (i) and (ii). Moreover, the two
expressions increase by one unit when we replace k by k+6 (cf. (ii1)). The
formula is thus true for all £ = 0.

Corollary 2.—The space M, has for basis the family of monomials G3G%
with «. B inteosers >0 and 7~_LQR = Lk

vevi w, M Mt/ T U =V Wl & == Jv.

We show first that these monomlals generate M,. This is clear for k < 3
by (i) and (ii). For k = 4 we argue by induction on k. Choose a pair (y, 5)
of integers =0 such that 2y +38 = k (this is possible for all & = 2). The
modular form g = G}G3 is not zero at infinity. If /e M,, there exists A e C
such that f—Ag is a cusp form, hence equal to Ak with h e M, _g, cf. (iii).
One then applies the inductive hypothesis to A.

It remains to see that the above monomials are linearly independent;
if they were not, the function G3/G3 would verify a nontrivial algebraic
equation with coefficients in C, thus would be constant, which is absurd
because G, is zero at p but not Gj.

M, be the graded algebra which is the direct

X
D
3
)
S
x~
-
2
<
I
o8

X on G, and YonG

Hance aAna o
ll\/ll\l\t, i l\d wEil

1 aloahra O ;.1

Au}al AigLvuia iU, \1'31-

E

3.3. The modular invariant

We put:
(22) j = 1728g3/A.

Proposition 5.—(a) The function j is a modular function of weight 0.

(b) It is holomorphic in H and has a simple pole at infinity.

(c) It defines by passage to quotient a bijection of H/G onto C.

Assertion (a) comes from the fact that g3 and A are both of weight 12;
(b) comes from the fact that A is 0 on H and has a simple zero at infinity,
while g, is nonzero at infinity. To prove (c), one has to show that, if A € C,
the modular form f;, = 1728g3— XA has a unique zero modulo G. To see
this, one applies formula (20) with f = f, and k = 6. The only decompositions
of k/6 = 1 in the form n+n'/2+n"/3 with n, n’, n” = 0 correspond to

(n, n’y, n") = (1,0,0)or (0, 2,0) or (0, 0, 3).

This shows that f, is zero at one and only one point of H/G.

Ve

Proposition 6.—Let [ be a meromorphic function on H. The following
properties are equivalent:
(1) f is a modular function of weight 0;
(i) f is a quotient of two modular forms of the same weight,
(1ii) f is a rational function of j.
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The implications (iii) = (ii) => (i) are immediate. We show that (i) = (iii).

Letf‘“’ a modular function. Rmng free to mnlhnlv f'h\/ a suitable pnl\lnnmml

savxazales

in j, we can suppose that f is holomorphic on H. Smce A is zero at infinity,
there exists an integer n = 0 such that g = A" is holomorphic at infinity.
ranti AN o thanm o madnlar FAarems AF waioht 1% vy naer D) AF th

Tha i anram 4
lllC IUUDLIUU g lD lllCll a IllUuulal 1UV1L 111} U] W\alsllL lL’l, U.y VUL, L UVl L1iIVV1 g

0 elll
we can write it as a linear combination of the G3Gj with 2« + 38 = 6n. By
linearity, we are reduced to the case g = G5G%, i.e. f = G3G5/A". But the
relation La-f-JP = 6n shows that p = a/L and q = ,D/.) arc uuegers and one

has f = G3*G3%/AP* 9. Thus we are reduced to see that G3/A and G3/A are
rational functions of j, which is obvious.

1 0 a
111 Q4 1144

) RN
a structure of complex analytic manifold on the compactification H/G of

/\
H/G. Prop. 5 means then that j defines an isomorphism of H/G onto the

Riemann sphere S, = Cu{o}. As for prop. 6, it amounts to the well
known fact that the only meromorphic functions on S, are the rational
functions.

2) The coefficient 1728 = 2°33 has been introduced in order that j has

residue equal to I at infinity. More precisely, the series expansions of §4
show that:

(23) j(2) = - + 744 + Z c(n)q", zeH,g = e*™,

n=1

One has:
c(1) = 22331823 = 196884, c¢(2) = 2''5.2099 = 21493760.
The c(n) are integers; they enjoy remarkable divisibility properties''’:

n=0(mod2%) = c(n) =0(mod2**% ifax1
n = 0(mod3") = c(n) =0 (mod ’%2‘”'3\ “
n = 0 (mod 5") = ¢(n) = 0 (mod 5**") "
n=0(mod7% = c(n) =0 (mod 7%

n = 0(mod 11?) = c(n) = 0 (mod 11°).

§4. Expansions at infinity

4.1. The Bernoulli numbers B,

They are defined by the power series expansion:(?’

(1) See on this subject A. O. L. ATKIN and J. N. O’BrieN, Trans. Amer. Math. Soc.,
126, 1967, as well as the paper of ATKIN in Computers in mathematical research (North
Holland, 1968).

% [n the literature, one aiso finds ““Bernouili numbers™ b, defined by

fe o)

eX— l Z bixtlket

hence bo = 1, b, = —1/2, bysy =0 if Kk > 1, and by = (= )* ' B,.
The b notation is better adapted to the study of congruence properties, and also to general-
izations a la Leopoldt.
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o) 2k
24) T 1%+ ¥ (—1)t1B
’ gf—1 2 =1 (VI
Numerical table
lop L o 0 o 1 5 o 69
B = —, = — ) = —, = —, = — s
P76 T T 300 T T 427 T 307 TP T 667 T 2730
5 _ T 3617 _ 43867 283.617 11.131.593
7T 6 B 5107 7 798 010 390 M 138
103.2294797 13.657931 7.9349.362903
12 ’ 13 — ’ 14 —
2730 6 870

Proposition 7.—If k is an integer =1, then:

22k—1 2k
25 2k) = .
(25) €K ="t B
The identity
© 22k, 2k
26 tgz=1- ) B
(26) zeotgz k; “ (2K)!

follows from the definition of the B, by putting x = 2iz. Moreover, taking
the logarithmic derivative of

27 sinz = z "10—0[ ( 522\) )

1 n-m
we get:
0 ZZ
(28) zecotgz = 1+2 z -
=1 Z —'n 7T
L
—12§ ¥
n=1k=1 n2k7T2k
Comnarino (26) and (2) we oet (25)
\/U“lyul“l& \bU} CALALING \‘-UI’ Y W evt \HJI

Examples  {(2) = -, {(4) = =5, U6) = 5=,
2.3 2.97.0 37001
8 10 6912
O =557 WO =5 M = s
14
ity — 27

36.527.11.13



92 Modular forms

4.2. Series expansions of the functions G,

We now give the Taylor expansion of the Eisenstein series G,(z) with

respect to g = e*™".
| atnet vnnth tha wurall L~ n fAarmnnla e
LCL ub Dlall VWILI1 LIIC WUl AILIUWIL 1ulllituia.
1 X 1 1
(29) meotgmz = - + Y + - .
z m=1\Z+m zZ—m
\ /
We have on the other hand:
. o0
(Qﬂ\ T Nt o 7 = ﬂ'rCOS 7Tz frnd l"rrqi_l _— if? —_— le. -_— 1w—7fw v 11”
\—I\Il " \/vl-& P L L . [ 2 XAl L XA r<124J L v ’
sin 7z g—1 1—¢q n=0

Comparing, we get:

1 X 1 1 < a
(31) -+ ) + =in—2ir Y q

Z m=1\zZ4+m z—m n=0
B‘r onrracoiva Adiffarantiatiane ~F (1) wa ~htain tha '~HNAavwing fAarmnla

] DULLLODI YV W uiliviviiuiatitiviim \V 1§ \Jl}, \AAY voviaiil il IUllUWllls 1viiiiuiqa
(valid for k = 2):
1 1 [v 0]

(32) Yo = (=2i* Y #g"

mez (M+2)*  (k—1)! n=1

Denote now by o,(n) the sum P2 d* of kth-powers of positive divisors of n.

“l

Proposition 8.—For every integer k = 2, one has:

2k 0

(2i"} n
(33) G(2) = 28(2k) +2 Qk—1)! nzl o2k-1(Mq".

We expand:
Gy(2) = T
(n,my(0,0) (nz+m)*

1

= 20(2k) +2 z y

n=1 meZ (nz+m)2"

Applying (32) with z replaced by nz, we get
2(—2mi 2k 2

2k— 1
(")l, 1\ Z Z d

LK— 1) d=1a=1i

Gi(2) = 20(2k) +

Corollary.—G(z) = 2{(2k)E,(z) with

(34) E(z) = 14y Z 02k-1(M)q"

n=1
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and

/YEN _f 1\K
(35) Ye = (—1)

is given by (34). The co efﬁcnent Vi 1S computed usmg prop. 7

Lo @ et @ sk
T kD) T k-t 2% g )
Examples
E,=14240 ¥ oy(n)q", g, = (2m)* ?‘—3— E,
n=1 .
oD n 1
Ey = 1-504 ’Z,l os(n)g", g3 = (277)6 2*;37 E;
E, = 14480 Z o, (n)q" (480 = 2°.3.5)
Es =1-264 Y oo(n)q" (264 = 23.3.11)
n=1
L 65520 ¢ . 4 a2
E;, = e Zl ay(n)g (65520 = 2*.32.5.7.13)

E,=1-24 Zl a,3(n)g"

Remark.—We have seen in n° 3.2 that the space of modular forms of
weight 8 (resp. 10) is of dimension I. Hence:
(36) E}=E,, E,E, = E;.

This 1s equivalent to the identities:

oo(n) = o3(n)+120 Z o s(m)oy(n—m)

n—1
1og(n) = 2los(n)—1004(n)+5040 > o3(n)os(n—m).
m=1
More generally, every E, can be expressed as a polynomial in E, and Ej.

AN ) APV IR oY N _ L e S Vs [
4.0, Lslimaies jOI' ne COG_UICK’IIIS 0] modduiar ]0"’7’1.&'
Let

e
aC

(37) f@) =} aq" (9=e"")

n=0
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be a modular form of weight 2k, k = 2. We are interested in the growth of
the a

n-

Proposition 9.—If f = G,, the order of magnitude of a, is n**~'. More
precisely, there exist two constants A, B > 0 such that

(38) An**"1 < |a,| < Bn**1,

a, = (—1)*Ao,,-,(n), hencela,| = Aoy _(n) = An**" 1.
On the other hand:

a,] | ® 1
-1 = A 421 = A4 Z

n an =1 d¥*1
Theorem 5 (Hecke).—If f is a cusp form of weight 2k, then
(39) a, = O(n").

= A{2k—1) < + o0.

(In other words, the quotient 1] remains bounded when n — 0.)

nk

A~nnIIon Ao

expansion (37) of f. Hence:
(40) |f(@)| = O(g) = O(e™?™) withy = Im(z), when g tends to 0.

Let #(z) = | f(z)|y*. Formulas (1) and (2) show that ¢ is invariant under
the modular group G. In addition, ¢ is continuous on the fundamental
domain D and formula (40) shows that ¢ tends to O for y — oco. This implies
that ¢ is bounded, i.e. there exists a constant M such that

(41) 1/(2)] £ My ™ forzeH.

Fix y and vary x between 0 and 1. The point ¢ = e*™**¥ runs along a
circle C, of center 0. By the residue formula,

1
1 - L
a = L ff(z)q =t = J O+ iv)q~d.
27
S, 0

(One could also deduce this formula from that giving the Fourier coefficients
of a periodic function.)
Using (41), we get from this

We write f in the form AG,+/4 with A £ 0 and a cusp form A and we
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apply prop. 9 and th. 5, taking into account the fact that n* is “negligible”

PROR g | ,2k—1
Luillipaicu lU n .

Remark.—The exponent k of theorem 5 can be improved. Indeed,
Deligne has shown (cf. 5.6.3 below) that

a, = O(nk—l/ZGO(n))7

4.4. Expansion of A

Recall that
A = g3-27g3 = (2m)'2273 " ¥(E}-E})

(42)
= (2m)'%(qg—24q*+252¢> - 1472¢* +. . ).

Theorem 6 (Jacobi).—A = (2m)'%q IT (1-¢")**

[This formuia is proved in the most natural way by using elliptic functions.
Since this method would take us too far afield, we sketch below a different
proof, which is ‘“‘elementary” but somewhat artificial; for more details, the
reader can look into A. Hurwitz, Math. Werke, Bd. 1, pp. 578-595.]
We put:
(43) F(z) = q [ (—¢")*"
n=1

To prove that F and A are proportional, it suffices to show that F is a
modular form of weight 12; indeed, the fact that the expansion of G has

cons etant to A will chA P n fn nd wa bn oW th A
vuUiL lDLallL l.\.;llll l..\.«lU YViil O11UYY 11at 1 1o A vuo IUllll auu Yy l\llU \Lll -

the space M2 of cusp forms of weight 12 is of dimension 1. By prop. | of
n° 2.1, all there is to do is to prove that:

\llt t K ic o onig

(44) F(—1/z2) = z'?F(z2).

We use for this the double series

342 22N L NN\ £~ 77 s nAd (121 24 ilnn\ (1 M FA— Unn’l { ~ts
\Il ny -7 \U V) 1iui uJ anda Uy ana \lll I[} 7~ \U,V), \1,V) 1Ul 11 aluud I1j. \1YV

the order of the summations!)
The series H; and H are easy to calculate explicitly because of the formula:
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(m
\

[Ty
l\l
N’
~~
3
+_
3
N
N’
3
l
..l._
3
N
3
.+_
N

Moreover, the double series with general term

1
1

[

1
1

(m—1+4+nz) (nz+nz) B (m+nz)? - (m+nz)* (m—1+nz)

is absolutely summable. This shows that G, — H, and G — H coincide, thus
that the series G and G, converge (with order of summation indicated) and
that

2mi

v{\ 1(7\ H
T\ £1

(N\— H(7) =
~1\<) 1\=J \<=/

It is clear moreover that G,(—1/z) = z*G(z). Hence:
On the other hand, a computation similar to that of prop. 8 gives

0

2
m n
(46) GI(Z) = 3* - 8772 Z O’I(i’l)q .
n=1
Now, go back to the function F defined by (43). Its logarithmic differential is

Eif=@(1—24 > ng™) = 4 (1—24 > Ul(n)q)

(47)
q \ n,m=1 / q n=1

By comparing with (46), we get:

dF  6i
(48) = G(2)dz.
F T
Combining (45) and (48), we have
dF(—1/z) 6i dz 6idz  , :
= G (—1)2) = = = = (2°G(2) —2miz
i~ . G = 6 @)= 2m)
(49) dF d
_F@)
F(z) z

Thus the two functions F(—1/z) and z'?F(z) have the same logarithmic
differential. Hence there exists a constant k such that F(—1/z) = kz'2F(z)
for all ze H. For z = i, we have z'? = 1, —1/z = z and F(z) =+ 0; this

5

shows that k = 1, which proves (44), g.e.d.

n - 7 N ~__ 1._ o 21 N [P | e I L | I A P o S ata_ £ A AN h

Remark.—One finds another ‘“elementary” proof of identity (44) in
C. L. SieGEL, Gesamm. Abh., 111, n° 62. See also Seminar on complex multi-
plication, 111, §6.
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4.5. The Ramanujan function

We denote by =(n) the nth coefficient of the cusp form F(z) = (2m) ™ '?A(z2).
Thus

|8

)
(SO N A(a" = o (1 — M2
\S A VAVEEREANAY o | ‘1 \* 17 7 .

j) =
s P

n=1 n

The function n— 7(n) is called the Ramanujan function.

Numerical table (¥

(1) =1, 72) = —-24, 7(3) = 252, 7(4) = — 1472, 7(5) =

7(6) = —6048, 7(7) = — 16744, 7(8) = 84430, 7(9) 1136 3
7(10) = —115920, =(11) = 534612, 7(12) 370944.
Properties of 7(n)
(51) (n) = O(n®),
because A is of weight 12, cf. n° 4.3, th. 5. (By Deligne’s theorem, we even
have 7(n) = O(n''/?"*) for every ¢ > 0.)
(52) 'r(llm) = 'r(n)'r(m) if (11, m) =1

(53) #(p"*Y) = w(p)r(p")—p'ir(p"~') forpprime,n > 1, cf. n° 5.5. below.

The identities (52) and (53) were conjectured by Ramanujan and first proved
by Mordell. One can restate them by saying that the Dirichlet series

L(s) = T(ﬂ)/n has the following eulerian expansion:

1
54 L(s) = cf. n° 5.4.
69 ©) = pDPI—T(p)p sppli=2s’

Rv a theorem of Hecke (cf n® 5. 4\ the function I extends to an entire

functlon in the complex plane and the function
(2m) " T(s)L(s)

lb andrld[ll Uy A g l/-_‘.)
The (1) enjoy various congruences modulo 2'2, 3% 53 7, 23, 691. We
quote some special cases (without proof):

(55) r(n) = n*o,(n) (mod 33)
(56) 7(n) = noy(n) (mod 7)
(57) 7(n) = o,,(n) (mod 691).

For other examples, and their interpretation in terms of ‘‘/-adic repre-
Qpnfqhnnc gsee Sém. Delance-Pisot-Poitou lQK7/RQ exposé 14. Sém. Bourbaki

IWwiitdini IWwW AICTILe A70CELT 16" A IOUVL A UviIivvnA L7V TN PUGV lﬁ" MIVITL. AU NI UINVGE
1968/69, exposé 355 and Swinnerton-Dyer’s lecture at Antwerp (Lecture
Notes, n° 350, Springer, 1973).

(D This table is taken from D. H. LEHMER, Ramanujan’s function (n), Duke Math. J.,
10, 1943, which gives the values of =(n) for n = 300.
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We end up with an open question, raised by D. H. Lehmer:
N
v

thant (i

.lb lL Ll uc Lllal. Y i = 1

\
1)
It is so for n < 1013,

§5. Hecke operators

Definition of the T(n)

wn
[y

Correspondences.—Let E be a set and let X be the free abelian group
generated by E. A correspondence on E (with integer coefficients) is a
homomorphism T of X into itself. We can give T by its values on the ele-
ments x of E:

2a n {

()1 N 7
nAXx)y, n\Xxje€4a,

[
g

(58) T(x)
yeE
the n(x) being zero for almost all y
Iet F be a numerical valued fnn(‘tmn on E. By Z-linearity it extends to a

function, again denoted F, on Xg. The transform of F by T, denoted TF, is
the restriction to E of the function Fo 7. With the notations of (58),

(59 Tp(v) — F(T(x}) — Zn (v\p(v).

\
I ‘L\J\

xz Il«y J\/l )’
yeE
The T(n).—Let Z be the set of lattices of C (see n° 2.2). Let n be an integer
> 1. We denote by T'(n) the correspondence on # which transforms a lattice

to the sum (in X) of its sub-lattices of index n. Thus we have:

(60) Tl = Y I’ ifle

(r: ) =

The sum on the right side is finite. Indeed, the lattices I'* all contain nI’
and their number is also the number of subgroups of order »n of I'/nl' =
(Z/nZ)*. If n is prime, one sees easily that this number is equal to n+1
(number of points of the projective line over a field with n elements).

We also use the homothety operators R; (A € C¥*) defined by

(61) R =\ ifl e

Formulas.—1t makes sense to compose the correspondences 7'(n) and
R;, since they are endomorphisms of the abelian group X,.

Proposition 10.—The correspondences T(n) and R, verify the identities

(62) R;R, = R;, (A, u € C*)

(63) R,T(n) = T(n)R, (n=1,2eC¥
(64) T(m)T(n) = T(mn) if (m,n) =

(65) T(p"T(p) = T(p"")+pT(p"" )R, (pprime,n = 1).

Formulas (62) and (63) are trivial.
Formula (64) is equivalent to the following assertion: Let m, n be two
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relatively prime integers =1, and let I be a sublattice of a lattice I' of
index mn; there exists a unique sublattice I'”" of T, containing I'”, such that
(I':I'") = n and (I'"":T"") = m. This assertion follows itself from the fact that
the group I'/T", which is of order mn, decomposes uniquely into a direct
sum of a group of order m and a group of order n (Bezout’s theorem).

To prove (65), let T' be a lattice. Then T(p"T(p)T, T(p"*HI' and

T(p"'l)R I' are linear combinations of lattices contained in I' and of index
p"*‘ inI’ (pnfe that R I" is of index »? in V\ Let I be such a lnttmp in the

AR AL Vi LA Swwir (& 1Qivive Aii viiw

above linear combmatlons it appears with coefﬁcnents a, b, c, say; we have
to show that a = b+pc, i.e. that a = 1+ pc since b is clearly equal to 1.

o have twn cacec:
YY W 11d YW LYYU VvAaowo.

i) I'” is not contained in pI'. Then ¢ = 0 and « is the number of lattices I",
intermediate between I' and I'”, and of index p in I'; such a lattice I contains
pF. In P’pl the image of I' is of index P and it contains the image of I
which is of order p (hence also of index p because I'/pI’ is of order p?);
hence there is only one I'" which does the trick. This gives @ = 1 and the
formula a = 1+ pc is valid.

i) L” < pI'. We have ¢ = 1; any lattice I of index p in I contains pT’,
thus a fortiori T'". This gives a = p+1 and a = 1+ pc is again valid.

Corollary 1.—The T(p"), n > 1, are polynomials in T(p) and R,,.
This follows from (65) by induction on n.

n prime. is
, P prime, IS

Corollary 2.—The n’ophrn generated by the R, and the T(p)

L 2 )} v4 3 e e

commutative; it contains all the T(n).
This follows from prop. 10 and cor. 1.

Action of T(n) on the functions of weight 2k.
Let F be a function on # of weight 2k (cf. n° 2.2). By definition

(LN - \ -2k r; oy *
(66) R,F=\2F f :

@)

rall Ae
Let n be an integer = 1. Formula (63) shows that

R(T(m)F) = T(n) (R,F) = A" *T(n)F,
in other words T(n)F is also of weight 2k. Formulas (64) and (65) give:
(67) T(m)T(n)F = T(mn)F if (m, n) = 1,
(68) T(p)T(p"F = T(p"*H)F+p!~2*T(p"~"“)F, pprime,n = 1.

5.2. A matrix lemma

Let I' be a lattice with basis {w;, w,} and let n be an integer = 1. The
following lemma gives all the sublattices of " of index

X n
. . ab .
Lemma 2.—Let S, be the set of integer matrixes ( L) with ad = n,
\ u

azl,0=sb<d If o = (g b) is contained in S,, let T, be the sublattice

d
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of I' having for basis

w! = aw. +bhw. w
wj aw; +D0w,, w

N~

szu

T he map o+ U, is a bijection of S, onto the set I'(n) of sublattices of index

The fact that T', belongs to I'(n) follows from the fact that det(c) = n.
Conversely let I'" € I'(n). We put

4
[y
S

[

N
&
=9
~

[ 8]
|
[y
g

i

-
N

A —4

These are cyclic groups generated respectively by the images of w, and w,.
Let a and d be their orders. The exact sequence

0—-Y,->I'/I"—>Y, -0

shows that ad = n. If w; = dw,, then w; e I''. On the other hand, there

w| = aw;+bw, withbeZ,
where b is uniquely determined modulo d. If we impose on b the inequality
0 = b < d, this fixes b, thus also wj;. Thus we have associated to every
[ eI'(n) a matrix o(I'") € S,, and one checks that the maps ¢+ I', and
I'" +» o(I'’) are inverses to each other; the lemma follows.

is a prime, the elements of §, are the matrix (

and the p matrices ((1) Z) with0 = b < p.

5.3. Action of T(n) on modular functions

Let k be an integer, and let f be a weakly modular function of weight 2k,
cf. n° 2.1. As we saw in n° 2.2, f corresponds to a function F of weight 2k on
Z such that

-2k
(69) F(I(wy,w)) = wy “f(w/w,).

We define T'(n)f as the function on H associated to the function n**~'T(n)F
on A. (Note the numerical coefficient n**~! which gives formulas ‘“‘without
denominators’ in what follows.) Thus by definition:

(70) T(n)f(z) =n

or else by lemma 2:

(71) T(m)f(z) = n**" Z'd
<d
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Proposition 11.—The function T(n)f is weakly modular of weight 2k. It
is holomorphic on H if f is. We have:

(72) Tm)T(n)f = T(mn) if (m,n)=

By
P

f=T(p"

J_

, 1\ n .o . . s
YAp®*IT(p" NS, if pisprime,n 2 1.

s Ve

Formula (71) shows that T(n)f is meromorphic on H, thus weakly

hal ’r/.\f | 1 (TN A
mOdu}af, if in addition f J iS 110101“1101'}3111\,, SG 1S 1{n)j. ©Ormuias (/«j anda

(73) follow from formulas (67) and (68) taking into account the numerical
coefficient n**~! incorporated into the definition of T(n)f.

Behavior at infinity.—We suppose that f is a modular function, i.e. is
meromorphic at infinity. Let

(74\ f{
iy

be its Laurent expansion with respect to g = e*™".

Proposition 12.—The function T(n)f is a modular function. We have

(75) Tmf@) = Y, vim)g"

with

(7R i) = N ,.Zk—l,,/@\

\ IU} )’\I l} L‘ u L\ 2 / .
al(n, m) a
az=1

By definition, we have:

T(m)f(z) = n?*=1 Y d7 Y c(m)e?mime=t il

ad=n, az1 meZ.
0sb<d
Now the sum
eZni bm/d
0sb<d

is equal to dif d divides m and to O otherwise. Thus we have, putting m/d = m’:

T( ){-\ ) 2k—-1 Z d—2k+1c(mrd)qam’.
ad=n
azl,meZ

Collecting powers of g, this gives:

OYORWE 2)@) ) (/"“’).

al d a

(’
>1
=1

Since f is meromorphic at infinity, there exists an integer N = 0 such that

c{m)y=0ifm<= —N. The c/’u—\, are thus zero
\a/

that T'(n)f 1s also meromorphic at infinity. Since it is weakly modular, it is a
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modular function. The fact that its coefficients are given by formula (76)
follows from the above computation,

Corollary 1.—y(0) = o,,_,(n)c(0) and (1) = c(n).

, ,'{‘ 117 —_— L‘ “lﬂlml‘l N1 e X
a—if n=p with P prime, one nas

=~

y(m) = c(pm)  if m % 0 (mod p)
o\ /_h 2k—1 L N /--A N\
y(im) = c(pm)+p“*~ "c(m/p)  if m = 0 (mod p).

Corollary 3.—If f is a modular form (resp. a cusp form), so is T(n)f.

This is clear.

Thus, the T(n) act on the spaces M, and M} of n° 3.2. As we saw above,
the operators thus defined commute with each other and satisfy the identities:

(72) T(m)T(n) = T(mn) if (m,n) =

(73) T(p)T(P") = T(p"*H+p**~T(p"~Y) ifpis prime,n = 1.

5.4. Eigenfunctions of the T(n)

zero. We assume that f is an eigenfunction of all the T'(n), i.e. that there
exists a complex number A(n) such that

(77) T(n)f = Mn)f foralln = 1.

Theorem 7.—a) The coefficient c(1) of q in fis £0.
b) If f is normalized by the condition c(1) = 1, then

(78) c(n) = Xn) foralln > 1.
A 1 44 smenza 19 ol ~osro P AA,.II-T.,..,. 4- A e T NL 20 A2 N thn
COUl. l l.U plrop. 14 DllUWb llldl L 1C COCILLICIIY Ul g 111 1 \r) ) 1> C{/1). ULl LT

other hand, by (77), it is also A(n)c(1). Thus we have c(n) = A(n)c(1). If
c(1) were zero, all the ¢(n), n > 0, would be zero, and f would be a constant
which is absurd. Hence a) and b).

Corollary 1.—Two modular forms of weight 2k, k > 0, which are eigen-
Sfunctions of the T(n) with the same eigenvalues Mn), and which are normalized,
coincide.

This follows from a) applied to the difference of the two functions.

Corollary 2.—Under the hypothesis of theorem 7, b):
(79) c(m)c(n) = c(mn) if(m,n) =1

(80) ce(p)e(p") = (") +p* " Fe(pTh).

oC

Indeed the eigenvalues A(n) = c(n) satisfy the same identities (72) and
(73) as the T'(n).

Formulas (79) and (80) can be translated analytically in the following
manner:
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Let

o)
(81) Dyls) = Y. c(mn’

n=
lha tha MNirirhlat cariac dafhinad hy tha A7) hyv tha ~rAr AfF +h [~ thic cariac
o€ € IriCnuCl sCrics aciunca oY inc ¢y, 0y tnC COr. o1 n. J, tnis Dbllbb
converges absolutely for R(s) > 2k

Corollary 3.—We have
(82) ®,05) = [] :
f 2k—1-2s

pep | — c(p)p‘; +p

By (79) the function n+ c(#) 1s multiplicative. Thus lemma 4 of chap.
VII, n® 3.1 shows that ®(s) is the product of the series X ¢(p")p~". Putting

p~* = T, we are reduced to proving the identity

Form the series

un = (3 c(p")T") (1= ()T +p™"'T?).

n=0

-
=

oefficient of T in ¢ is c(p)—c(p) = 0. That of T"*', n 2 1, is

c(p"* M) —c(p)e(p”) +p2"‘ Le(p"™h),

Thus the series s is reduced to its constantterm c (1) =1
. Thus the series 18 reduced to itsconstantterme(l) =1

which is zero by (80
3

and this proves (83).

N’

Remarks.—1) Conversely, forinulas (81) and (82) imply (79) and (80).

2) Hecke has proved that ®, extends analytically to a meromorphic
function on the whole complex plane (it is even holomorphic if fis a cusp
form) and that the function

(84) Xi(s) = @m) T L(s)D(s)
satisfies the functional equation
(85) Xi(s) = (=X, 2k —s).

The proof uses Mellin’s formula

[o o]

%®=fUW%ﬂ@W%

Oe,

combined with the identity f(—1/z) = z?*/(z). Hecke also proved a con-
verse: every Dirichlet series @ which satisfies a functional equation of this

type, and some regularity and growth hypothesis, comes from a modular
form f of weight 2k; moreover, f is a normalized eigenfunction of the 7'(n)
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if and only if ¢ is an Eulerian product of type (82). See for more details
E. HECKE, Math. Werke, n° 33, and A. WEIL, Math. Annalen, 168, 1967.

5.5. Examples

a) Eisenstein series.—Let k be an integer = 2.

Proposition 13.—The Eisenstein series G, is an eigenfunction of T(n);
the corresponding eigenvalue is oy, _ (n) and the normalized eigenfunction is

(86) (—1)"%" — (-2 o 2 Oap ("

The corresponding Dirichlet series is C(S)C(s 2k + 1)

ma (Ancider 7 aga fuinectinn on the Z anflattice
l o) tl,l\./\./

T(nY n ner < a haya-
iz \[/}, l.}lllll\/c \/Ullolu\vl Uk aoQai1ul l Livil Uil ll\-ﬂ \/L [ g 74 11Q [ . Yyviiiavwe .
2k
Gu(T) = ' 1%, cf n° 2.3,
yell
PR |
aliu

T(HG(T) = Y 2 1/~
(I':T)=p yel
Let y e I'. If y e pI" then y belongs to each of the p+1 sublattices of I' of
index p; its contribution in T(p)G,(I") is (p+1)/y**. If y e [—=pl, then y
belongs to only one sublattice of index p and its contribution is 1/y?*. Thus

T(OG(T) = G +p T 1777 = GUT)+2Gy (D)
YEp

= (1+p' *HGT),

which proves that G, (viewed as a function on #) is an eigenfunction of
T(p) with eigenvalue 1+p'~2*; viewed as a modular form, G, is thus an
eigenfunction of I'(p) with eigenvalue p**~!(1 +p'~2%) = ¢,, _;(p). Formulas

(34) and (35) of n° 4.2 show that the normalized eigenfunction associated with
Gy 1s

(D P S o )"
4k n=1
This also shows that the eigenvalues of T'(n) are o,,_,(n). Finally

Z oo 1()/n* = a**~a’d*
n=1 a,d =1

A a8\ SO 1, s+ =2k

= (L I/U) (L 1/a )

dzl az1
= U(s)U(s—2k+1).

b) The A function
Proposition 14.—The A function is an eigenfunction of T(n). The corre-
ponding eigenvalue is v(n) and the normalized eigenfunction is

9}

(2m)™"?A =gq 1:[1 (1-¢"** = 3 7(n)q"

n=1
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This is clear, since the space of cusp forms of weight 12 is of dimension
iss

le by the T(n).

Corollary.—We have

) (nm) = 7(n)v(m) if (n,my = 1,

(53)  w(p)r(p") = 7(p"" ) +p" 7(p""")  ifpisaprime,n z 1.
This follows from cor. 2 of th. 7.

Remark.—There are similar results when the space M? of cusp forms
of weight 2k has dimension 1; this happens for

k =6,8,9, 10, 11, 13 with basis A, AG,, AG,, AG,, AGs, and AG,.

5.6. Complements

SA1 Thy, DPotoveco
e \Je

NI CNnsrirt
1. AL7IC 1 CTICTIOOUIL vLUuilu

Let f, g be two cusp forms of welght 2k with k > 0. One proves easily
that the measure

w(f.8) = f(2)g2)y* dxdyly*  (x = R(z),y = Im(2))

is invariant by G and that it is a bounded measure on the quotient space H/G.
By putting

(87) > = [ e = [ f2)e@y™ dxdy,

HIG D

we obtain a hermitian scalar product on M? which is positive and non-
degenerate. One can check that

1ivwih vailen

(88) (T()f, &> = {f Tn)g>,

which means that the T(n\ are hermitian operators with respect to (o).

FULET 3 4 (43 B [4 2RV, a2 “s WV \J > O/

Since the T(n) commute W1th each other, a well known argument shows that
there exzsts an orthogonal basis of M made of eigenvectors of T(n) and that

es of T'(n) are real numbers.

5.6.2. Integrality properties.
Let M, (Z) be the set of modular forms

f= ¥ clog’

of weight 2k whose coeflicients c(n) are integers. One can prove that there
exists a Z-basis of Mk(Z) which is a C-basis of Mk [More precisely, one can

L,.,\I, : cota fvana m24\ .
NneckK ulaL 1V1k\b) llab tuc: luuuwulg Udblb UCLall Luat rF = =4q 11 \1 —-q) ).

k even: One takes the monomials ESF*? where «, e N, and «+38 = k/2;
k odd: One takes the monomials E;E3F? where «, Be N, and «+38 =
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(k—3)/2.] Proposition 12 shows that M,(Z) is stable under T(n), n = 1. We
conclude from this that the coefficients of the characteristic polynomial of T(n),
acting on M,, are integers''); in particular the eigenvalues of the T(n) are
algebraic integers (“‘totally real”, by 5.6.1).

1
ar Jull 4 CLcroovri (,UIUCLLMIC

Let f = § c(n)q", c¢(1) = 1, be a cusp form of weight 2k which is a

normalized eigenfunction of the T(n).

Let @, (T) = 1—c(p)T+p**~'T?, p prime, be the polynomial defined in
n’ 54 formula (83). We can write

(89) Oy (1) = (1=%,T) (1 =,T)

with

(90) a,ta, = c(p), o, = pHh

The Petersson conjecture is that «, and «, are complex conjugate. One can

also express it h\/

Qiov TpAWOS

| = |y = P72,
or
[af Y| < Dpk—1/2
[C\F)| = «F ’
or

le(n)] £ n*"Y%0y(n) forallm = 1.

For k = 6, this is the Ramanujan conjecture: |7(p)| < 2p''/2.

These conjectures have been proved in 1973 by P. Deligne (Publ. Math.
I.H.E.S. n°43, p. 302), as consequences of the “Weil conjectures’ about
algebraic varieties over finite fields.

§6. Theta functions

6.1. The Poisson formula

Let V be a real vector space of finite dimension » endowed with an
invariant measure u. Let V'’ be the dual of V. Let f be a rapidly decreasing
smooth function on V (see, L. SCHWARTZ, Théorie des Distributions, chap.
VII, §3). The Fourier transform f” of f is defined by the formula
PPN s N {‘ _2‘.'n/ \ ~
1) J )= J e~ f(x0u(x).

14
This is a rapidly decreasing smooth function on V.

Let now 1" be a latiice in V' (see n° 2.2). We denote by 1"’ the lattice

in V' dual to T'; it is the set of y € V'’ such that {(x, y> € Z for all x e I". One

M We point out that there exists an explicit formula giving the trace of T(n), cf.
M. EICHLER and A. SELBERG, Journ. Indian Math. Soc., 20, 1956.
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checks easily that I'" may be identified with the Z-dual of I' (hence the
terminology).

Proposition 15.—Let v = u(V/T"). One has:

f’(\)

(92) 1)

‘{’(Y\ frned
J A\

~]

~

b

m

—
|

ye

After replacing u by v~ 'u, we can assume that w(V/I') = 1. By taking a
basis e,,..., e, of I', we identify ¥ with R", I' with Z", and p with the
product measure dx, ... dx, Thus we have V' = R", I'" = Z" and we are
reduced to the classical Poisson formula (SCHWARTZ, loc. cit., formule (VII,

7:5)).
6.2. Application to quadratic forms

We suppose henceforth that V' is endowed with a symmetric bilinear
form x.y which is positive and nondegenerate (i.e. x.x > 0 if x + 0). We

' : : 4 X f thiq hil; [y Tha lattira TV K
identify V with V' by means of this bilinear form. The lattice I’ becomes
€

thus a lattice in V'; one has y ¢ ' if and only if x.y € Z for all x e I
To a lattice I', we associate the following function defined on R¥ :

(93) O = Z e T
xel’
We choose the invariant measure p on V such that, if ¢,,...¢, is an

orthonormal basis of V, the unit cube defined by the ¢; has volume 1. The
volume v of the lattice I' is then defined by v = w(V/I'), cf. n° 6.1.

Proposition 16.—We have the identity
(94) Ort) = 7" 'O Y.
Let f=¢ ™ Itisa

Q
f=e ) S |
Fourier transform f’ of f is equa
of V' and use this basi

nxZ : - nx?

We are thus reduced to showing that the Fourier transform of ¢ ™ is ¢™ ™",
which is well known.

We now apply prop. 15 to the function f and to the lattice ¢t''*I"; the
volume of this lattice is #/?v and its dual is ¢t~ '/2I""; hence we get the formula

to be proved.

Let e;,...,e, be a basis of I'. Put a;;, = e;,.e;. The matrix 4 = (a;;) 1S
positive, nondegenerate and symmetric. If x = 2Zx,e; is an element of V/, then

XX = Xa; XX,
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The function ® can be written

(0%) A () — N pmtXaiixix;
\/Jl \Jr\‘/ L‘ < .
Xi€Z

The volume v of T" is given by

1/2
(96) b = det(d)"
Thic can he ceon ac follawe- T at o e ha an arthanarmal hacic Af I/
41510 wQil UWw OVVIEIL A LULIV YYD .. | & 7 § Cl’ 9 Cn UN Al villiiviiviiiliial vaoio uvi r
and put

E = EAN NE,, € = e N N €,

A Laoa Y sttt 1Y s ANA mcmamviam s oo — Aatld AN 2 n nmnd bacr mmanims tonam
YYC 11dVC € — A& WIlLl I/\l = U. IVIVICUYVCL, €.€ — Uli\1) €., allu Uy LUl“pdllllg,

obtain v? = det(4).
Let B = (b;;) be the matrix inverse to A. One checks immediately that
the dual basis (e/) to (e;) is given by the formulas:

e: - Z bijej
The (e}) form a basis of I'’. The r atnx (ei.e;) is equal to B. This shows in
particular that if v" = w(V/I'’), then we have vv’ = 1.

6.4. Special case

We will be interested in pairs (¥, I') which have the following two
properties:

form x.y defines an isomorphism of T" onto its dual n ma tr1x terms, it means
that the matrix 4 = (e;.e;) has integer coeﬁ?czent nd that its determinant

equals 1. By (96) the last condition is equivalent to v = 1.

If » = dim V, this condition mplles that the quadratic module I’ belongs
to the category S, defined in n° 1.1 of cha V. Conversely, if I'eS, is
positive definite, and if one puts V = I' ® R, the pair (V, I') satisfies ()

(i) We have x.x = 0 (mod 2) for all x T'.

This means that I' is of type II, in the sense of chap. V, n° 1.3.5, or else
that the diagonal terms e;.e; of the matrix 4 are even.

We have given in chap. V some examples of such lattices I'.

6.5. Theta functions

In this section and the next one, we assume that the pair (V, I') satisfies
conditions (i) and (i1) of the preceding section.

Let m be an integer =0, and denote by r(m) the number of elements
¥ of I such that x.x = 2m. It is easv to see that r-(m) is bounded bv a

e Suwiai il Jeon a3 WS LA B AL AR . ) w

polynomial in m (a crude volume argument gives for instance rp(m) =
O(m"?)). This shows that the series with integer coefficients
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oD

Y rm)g™ = 1+r(l)g+. ..

m=0

converges for |g] < 1. Thus one can define a function 6 on the half plane H
by the formula

©7) O0r(z) = ) re(m)g” (whereq = "),
m=0
We have:
(98) 9[_(2) — Z q(x.x)/Z — Z eniz(x.x).
xel’ xel”

The function 0 is called the theta function of the quadratic module I'. It 1s
holomorphic on H.

Thonrnm R —{a) T 12 dm inon n of l/ i :vis‘l'b!e v R

lllllllll \&y 4 [ 11 ILuHJIL e vy W ue vy ©.

(b) The function 0 is a modular form of weight n/2.
Assertion (a) has already been proved (chap. V, n° 2.1, cor. 2 to th. 2).

WA e~ thn s dAmtiss
\AA™ PIUVC lllC lUCllllLy

{1 \n/2
(99) ()r(—l/z) = (12) / Gr(z)
[ P PR 1 o I DI . b Y & A 4 e - SIS B Y O R P
Since the two sides are analytic 1n z, 1t suflices to prove this formula when
z = jt with t real >0. We have

Ocit) = ) e ™9 = O (1).

xel”

Similarly, 0-(—1/it) = ©(¢t~"). Formula (99) results thus from (94), taking

into account that v = 1l and T" = T,

Since # is divisible by 8, we can rewrite (99) in the form
(100) 0r(—1/z) = 2"201(2)

which shows that 0 is a modular form of weight n/2.

[We indicate briefly another proof of (a). Suppose that # is not divisible
hy Q: ranmlaninma T £ nmArncon v T DN A. T "NI"NT"m IM A Ay
oy o, répiacing i, Ii necessary, u_y 1 w1 OfF 1 1 11 o1, WC iiiady

suppose that n = 4 (mod 8). Formula (99) can then be written
Or(—1/2) = (= 1)"*2"20(z) = —2"20r(2).

If we put w(z) = 0(z)dz"'*, we see that the differential form w is transformed
into —w by S:z+ —1/z. Since w is invariant by T:z+> z+ 1, we see that ST
transforms o into —w, which is absurd because (ST)> = 1.]

Corollary 1.—There exists a cusp form fr of weight n/2 such that
(101) Br = Ek+Jfr where k = 71/4

This follows from the fact that 6 (c0) = 1, hence that 6.—FE, is a cusp
form.
4k "
Corollary 2.—We have r(m) = 5 G, 1(M)+O0(m*) where k = n/4.

k
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This follows from cor. 1, formula (34) and th. 5.

Remark.—The “‘error term” fr is in general not zero. However Siegel
has proved that the weighted mean of the fr is zero. More precisely, let C,
be the set of classes (up to isomorphism) of lattices I' verifying (i) and (ii)
and denote by g the order of the automorphism group of I' € C, (cf. chap. V,
n° 2.3). One has:

1

(102) Y —.f+=0
\ 7 LJ JI
F'eCn 81
or equivalently
1
T'eCn gr FGC" gr

Note that this is also equivalent to saying that the weighted mean of the 6
is an eigenfunction of the T'(n).

For a proof of formulas (102) and (103), see C. L. SIEGEL, Gesam. Abh.,
n° 20.

6.6. Examples

1) The case n = 8.
Every cusp form of weight n/2 = 4 is zero. Cor. 1 of th. 8 then shows
that 0 = E,, in other words:

(104) re(m) = 24005,(m) for all integers m = 1.
This applies to the lattice I'g constructed in chap. V, n° 1.4.3 (note that this
lattice is the only element of Cg).

1) The case n = 16.
For the same reason as above, we have:

s
(105) O = E, = 1+480 ) o,(m)g™
m=1
on FP=Tg@® lgor' =T (withth
n° 1.4. ) even though these two lattices are not isomorphlc they have the
same theta function, i.e. they represent each integer the same number of
times.
Note that the function 6 attached to the lattice I'gy @ I'g is the square of
the function 6 of I'y; we recover thus the identity:

0 2 0
(1+240 y 03(m)q"') — 14480 Y o5 (m)g™.
m=1 m=1

1) The case n = 24.
The space of modular forms of weight 12 is of dimension 2. It has for
basis the two functions:

65520
E¢ =1+ —— Ull(m)qm,



Theta functions 111

[e 6}

F= @) 28 =q [] A=q"* = 3 g™

m=1

The theta function associated with the lattice I" can thus be written

(106) Or = E¢+ccF withep € Q.
We have
LS8N
(107 v (112} — UYLV (32 1~ {322} Fre s > 1
\IUI} Ir\ll} —_ 691 Ull\"}TLF’\"} 1oL = 1

The coefficient ¢ is determined by putting m = 1:
65520

108 cr = re(l) — ———.

(108) r=re(l) <01

Note that it is #0 since 65520/691 is not an integer.

Examples.
a) The lattice I' constructed by J. LexcH (Canad. J. Math., 16, 1964) is such
that r(1) = 0. Hence:

65520

cp = — ——— = —2*3257.13/691.
691
b) ForI' =T'y @ I'y ® I'g, we have r(1) = 3.240, hence:
Cr = 432000 _ 273353/691.
691
c) For I' =TI',,, we have rp(1) = 2.24.23, hence:
Cr = -6—9/703144 = 2'93.227/691.
071

6.7. Complements

The fact that we consider only the full modular group G = PSL,(Z),
forced us to limit ourselves to lattices verifying the very restrictive conditions
of n° 6.4. In particular, we have not treated the most natural case, that of the
quadratic forms

xf-l—. . .+xﬁ,

which verify (1) but not (ii). The corresponding theta functions are ‘“modular
forms of weight n/2”’ (note that »n/2 is not necessarily an integer) with respect
to the subgroup of G generated by S and T?. This group has index 3 in G,
nnAd ¢ HirvemAnmrianmtal A amania | 2PN L S 2 T 29 wwhinlh AAmeAca A

alidu llb lullualllClllal uu1ua1u nas LWU LCUdPO LU wiliCn Lourlrioopoung lWU
types of “Eisenstein series’; using them, one obtains formulas giving the
number of representations of an integer as a sum of » squares; for more

details, see the books and papers quoted in the bibliography.
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